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Highlights

Carcinogenic effects of certain microorganisms, including viral, 
bacterial, fungal and parasitic agents have long been suspected.

• Several studies have revealed diverse biological pathways to the 
carcinogenesis of microorganisms, including presence of viral 
gene products in some cancer and precancerous cells. 

• Recent reports indicate the presence of antibodies to a 
certain mycovirus-containing Aspergillus flavus in the plasma of 
B-cell acute lymphoblastic leukemia (ALL) patients in complete 
remission. Exposure of mononuclear leukocytes of these ALL 
patients to the products of the above organism, in vitro, had 
resulted in the redevelopment of typical genetic and cell surface 
phenotypes of ALL. These findings are of interest and need to be 
further explored.

Introduction

For a long, association of certain viral, bacterial, fungal, and 
parasitic infections and the development of cancer has been 
suspected, but in most cases, not definitively proven. Some estimate 

that worldwide, approximately 20% of all cancers are induced by 
various infections [1]. While the association of certain infections 
and malignant disorders is well established, the mechanisms 
governing these processes are often poorly understood. In 2008, 
an association of infections and cancer was reported to range 
from 3.3% in Australia and New Zealand to 32.7% in sub-
Saharan Africa, with more developed countries having a lower 
rate of infection-related malignancies [2]. The carcinogenic 
potential of infections often has been attributed to their direct 
effects on the mechanisms of cancer initiation, development, and 
progression, or indirectly as a result of induced inflammatory 
or epigenetic alterations in the immune system. Several reports 
regarding the carcinogenic effects of bacterial [3-18], parasitic [19, 
20], and fungal [21-28] organisms and their relation to human 
disorders and the development of cancer are available. While the 
widespread existence of mycoviruses in fungi is well recognized 
and their effects on various crops have been demonstrated [29-
56], their direct effects on human health have not yet been fully 
investigated [53-56]. More extensive data regarding the connection 
of other viral agents and cancer are available [57, 58]. Advances 

Abstract

Several studies have shown that microorganisms can affect tumor initiation and progression, directly through their effects on the cells and indirectly 
by their effects on the immune system. The carcinogenesis of certain viral, bacterial, fungal, and parasitic organisms has been long suspected. Addi-
tionally, the direct association of some viral agents and cancer such as Epstein-Barr virus and Burkitt’s lymphoma, in certain geographical areas, have been 

reported. Likewise, the development of non-cardia gastric cancer by Helicobacter pylori and the relation of infection with Schistosoma haematobium 
and the development of bladder cancer is well recognized. Studies regarding the carcinogenetic effects of fungal infections have been mostly attributed 
to their mycotoxin production. Recent recognition that some filamentous fungi and yeasts potentially play a role in the development of certain cancers 
has expanded understanding of the scope of their involvement in carcinogenesis. Most recently, it has been shown that plasma of patients with B-cell 
acute lymphoblastic leukemia in full remission, and long-term survivors, immunologically react to the products of a mycovirus containing Aspergillus 
flavus. Unlike controls, in vitro exposure of mononuclear leukocytes from these patients to the products of this organism was shown to reproduce genetic 
and cell surface phenotypes characteristic of B-cell acute lymphoblastic leukemia. The potential carcinogenic and leukemogenic role of fungi, with and 
without mycoviruses, needs further investigation.

Keywords: Bacteria; Cancer; Carcinogenesis; Etiology; Fungi; Parasites; Leukemogenesis; Mycoviruses; Viruses

21ST CENTURY
PATHology



Volume 2, Issue 1Cameron K. Tebbi

Citation: Cameron K. Tebbi (2022) Carcinogenesis and Leukemogenesis of Microorganisms: A Review,
21st Century Pathol, Volume 2 (1): 109

21st Century Pathol-2-109 | Page 2 of 11

in epidemiology, infectious diseases, and molecular biology, have 
disclosed a significant amount of information relating to the 
potential of infections to produce cancer and mechanisms of 
their carcinogenic or leukemogenic effects [59-73]. Cancers that 
are assumed to be caused by infections are generally reported to 
have a higher mortality rate than other malignant disorders [2]. 

Among various organisms, viruses are most often suspected to 
contribute to the development of cancers [74-119]. The finding 
of viral gene products in some malignant cells that acquire anti-
apoptotic phenotypes points to such involvement. Both DNA 
and RNA viruses are proposed to be involved in the process of 
carcinogenesis (Table-1).

This includes DNA viruses such as Epstein-Barr virus (EBV) [76-80], 
human papillomavirus (HPV) [81-89], human immunodeficiency 
virus (HIV) [86, 89, 108-114], human herpes virus-8 (HHV), [90-
92] hepatitis B virus [98-101] and RNA viral agents such as Human 
T lymphotropic virus type 1(HTLV-1) [93-97] and hepatitis C 
virus [99, 102, 103]. Emerging data regarding molecular events 
underlying the tumorigenic potential of human oncoviruses 
reveals that virus-host interactions can also occur at the epigenetic 
level [3, 104]. Epigenetic alterations are stable long-term changes 
in the DNA, which are normal evolutionary biological processes, 
necessary for adaptations to the environment. These do not 
result in alteration of the DNA sequence but can affect genomic 
stability and gene expression. Interaction between viral proteins 

and the epigenetic system can potentially lead to alterations in 
the epigenetic organization of the cell leading to carcinogenesis. 
There is increasing evidence that oncogenic viruses can affect 
molecular events and contribute to the epigenetic changes which 
may be involved in this process. Certain viral agents can interfere 
with the host epigenetic structure resulting in aberrations 
of DNA methylation and changes in histone modifications. 
Epigenetic changes such as altered miRNA expression and 
alteration in DNA methylation can promote the expression of 
oncogenes and the silencing of tumor-suppressor genes. Since 
some miRNA genes may be regulated by epigenetic mechanisms, 
it has been postulated that alterations in the methylation state 
and deregulation of miRNA promoters have the potential to be 

Table 1: Examples of viruses implicated in human cancers.

Virus Viral Taxonomy Genome Possible association with cancer

EBV Herpesviridae dsDNA 172 kb~90ORFs BL, NPC, Lymphoma, HL

BKV Polyomaviridae dsDNA~5.2 kb E, G, F, N, P, Li, O, Possible prostate

HBV Hepadnaviridae dsDNA 3.2 kb 4 ORFs HCC

HCV Flaviviridae dsRNA 9.4 kb 9 ORFs HCC, Lymphoma, GI, CR, ES, B

HERVs Retroviridae dsRNA/DNA? Seminomas, breast, GC, KS, Le, melanoma, P

HIV Retroviridae dsRNA KS, NHL, HL, Cervical, Anal, Conjunctiva

HMTV Retrovir dsRNA/DNA? Breast carcinoma

HPV Papillomaviridae dsDNA 8 kb 8–10 ORFs Oral, cervical, anogenital, Oropharynx, Tonsil

HTLV-1 Retroviridae dsRNA 9.0 kb 6ORFs Adult T-cell leukemia/lymphoma

JCV Polyomaviridae dsDNA ∼ 5.2 kb Possible medulloblastoma

KSHV Herpesviridae dsDNA 165 kb ∼ 90ORFs Kaposi sarcoma, primary effusion lymphoma 

SV40 Polyomaviridae dsDNA~5.2kb B, O, malignant mesothelioma, lymphoma

TTV Circoviridae ssDNA 3.8 kb Cervical, lung, possible head and neck

Reference: McLaughlin-Drubin, M. E., & Munger, K. (2008). Viruses associated with human cancer. Biochimica et 
Biophysica Acta (BBA)-Molecular Basis of Disease, 1782(3), 127-150.

Abbreviations: ATL: Adult T-cell leukemia; B: Brain; BKV: Burkitt’s virus; BL: Burkitt’s lymphoma; BKV: BK virus; 
CR: Colorectal; E: Ependymoma; EBV: Epstein–Barr virus; Es: Esophageal; HBV: Hepatitis B virus; F: Fibrosarcoma; 
HL: Hodgkin’s lymphoma; G: Glioma; GC: Germ cell; GI: Gastrointestinal; HERVs: Human endogenous retroviruses; 
HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus; HMTV: Human mammary tumor virus; HPV: Human 
papillomavirus; HTLV-1: Human T-cell leukemia virus; JCV: JC virus; KS: Kaposi’s sarcoma; KSHV: Kaposi’s sarcoma-
associated herpesvirus; Le: leukemia; Li: Liposarcoma; NPC: Nasopharyngeal carcinoma; N: Neuroblastoma; NHL: 
Non-Hodgkin’s lymphoma;  O: Osteosarcoma; P: Pancreatic tumors; SV40: Simian virus 40; TTV: Torque teno virus.
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the motivator of aberrant expression in cervical cancer [104]. 
This may be the case in certain types of human papillomavirus 
infection. The DNA methylation pattern of viral and host genome, 
histone modification, and gene silencing by non-coding RNAs 
can result in initiation and maintenance of epigenetic changes, 
potentially leading to cervical carcinogenesis [104]. While in the 
past bacterial infections were not considered to be associated 
with the development of cancer, in recent years their involvement 
in carcinogenesis through induction of chronic inflammation 
and production of carcinogenic bacterial metabolites have been 
explored [4-18]. Moreover, recent studies have examined changes 
in the intestinal flora and microbial metabolites in colorectal 
cancer and their relation to the immune system and inflammatory 
abnormalities. An example of the inflammatory mechanism 
inducing carcinogenesis is Helicobacter pylori which are classified 
as a class I carcinogen by the World Health Organization [4, 7]. 
Epidemiologically this agent has been linked to the distal gastric 
adenocarcinoma by inducing cell proliferation and production 
of mutagenic free radicals and N-nitroso compounds [4-7]. 
Bacterial agents can also produce other metabolites suspected to 
be carcinogenic. This is best exemplified by their carcinogenic 
ability in colon cancer. Bile salt metabolites increase colonic 
cell proliferation. It is known that taurocholic acid is capable of 
stimulating intestinal bacteria which in turn convert taurine and 
cholic acid to hydrogen sulfide and deoxycholic acid, genotoxin, 
and promotor of tumors, respectively. Exogenous compounds 
such as rutin may be metabolized into mutagens [7, 8]. Similarly, 
in pancreatic cancer, some studies have suggested a link between 
bacteria, chronic infection, and risk of tumorigenesis [4, 10-15]. 
Growing evidence suggests that the development of pancreatic 
cancer can be due to factors ranging from inflammation and 
immune activation to increased nitrosamine exposure. A higher 
risk of pancreatic cancer in individuals with periodontitis, which 
is largely driven by keystone pathogens and pathobionts, as 
compared to controls, has been reported [16, 17]. Additionally, 
elevated levels of antibodies to Porphyromonas gingivalis in 
blood, before the diagnosis of pancreatic cancer have been found 
[14]. It is not clear if the reported relationship between bacteria 
and pancreatic cancer is cause and effect, reactivity, or both [4, 
10-17]. In one study, the bacterial DNA profile in the pancreas 
was found to be similar to those of the duodenum of the same 
individual, which may suggest that bacteria may have migrated 
from the intestinal lumen to the pancreas [18].

Parasites such as Opisthorchis viverrine, and Schistosoma 
hematobium, parasitic flatworms, can cause cholangiocarcinoma 
and bladder cancer, respectively [19, 20]. The association 
between Schistosoma japonicum, Schistosoma mansoni, and 
hepatocellular carcinoma has been reported [20].

The relation of fungal organisms and cancer has long been 
suspected, and up until recently, often attributed to their 
mycotoxin production [21-27]. Immunosuppressive effects of 

fungal agents such as mycotoxin have been recognized as culprits 
related to different types of cancer [27]. Several mycotoxins are 
considered to be mutagenic and Aflatoxin B1, Ochratoxin 
A, and fumonisins are known to be potent carcinogens. For 
example, aflatoxins have been suspected to induce hepatocellular 
carcinoma, ochratoxin to cause cancer of the urinary tract, and 
fumonisins to induce esophageal cancer [21-27]. There is some 
evidence that Candida albicans increases the risk of carcinogenesis 
and metastasis by various mechanisms, including inducing 
inflammation, producing carcinogenic byproducts, induction of 
Th17 response, and molecular mimicry [28]. Viruses infecting 
fungi, known as mycoviruses, can affect fungal organisms [29, 
30]. It is estimated that from 30 to 80% of all fungal species, 
predominantly endophytic fungi, may contain mycoviruses [30].  
Mycoviruses in fungi can be transmitted intracellularly during cell 
division, sporogenesis, and cell fusion [31-34] and the presence 
of mycoviruses in various species has been well characterized [29, 
34, 41]. The genome of most mycoviruses consists of double-
stranded RNA (dsRNA), while in about 30% of mycoviruses this 
is composed of a positive, single-stranded RNA (+ssRNA) [33-
37]. A geminivirus-related DNA mycovirus and the existence of 
multiple viruses in given fungi have been reported. While often 
cryptic or asymptomatic, infection of fungi with mycoviruses can 
lead to phenotypic changes in their host, resulting in perturbance 
of sporulation, disturbance of growth, hypovirulence, or 
hypervirulence in entomo- and phytopathogenic fungi. Such 
infestation can even be fatal to the host. Hypovirulence induced 
by mycoviruses in the fungal hosts has been used as a biological 
control mechanism, therefore, much research has focused on 
mycoviruses that infect economically important fungi [33-37].

Often, there is a state of genetic conflict between mycoviruses 
and their host. In general, fungi lack any known mechanisms of 
innate and adaptive immunity, however, they can utilize RNA 
degradation as an antiviral defense system [38-39]. In some 
strains of Aspergillus flavus such as NRRL 5565, the presence 
of mycovirus results in the suppression of aflatoxin production, 
and in Aspergillus Niger, reduced radial rate of growth. These 
phenomena have been used in agriculture to control the 
production of carcinogenic aflatoxins. Changes in pigmentation, 
growth rate, biomass, spore production, and RNA silencing may 
indicate the ability of mycoviruses to alter the genetics and function 
of their host [40-50]. As the transfer of the genetic content to a 
fungal host occurs by transformation and transfection, the effects 
of these transfers in humans exposed to mycovirus-infected fungi 
are not known and need to be explored.

Mycoviruses carrying dsRNA genome that can be pathogenic 
in humans have been classified as Partitiviridae, Totiviridae, 
Chrysoviridae, Reoviridae, and Hypoviridae [42]. While there has 
been significant interest and research on the effects of mycoviruses 
in agricultural domains, their possible effect solely, or in 
combination with their fungal host, on human health has not been 
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thoroughly investigated, and descriptions of such involvement are 
rarely published reiterating the unmet need for new studies.  In 
one study, extrachromosomal dsRNA segments in clinical isolates 
of Malassezia species, which is the most common fungal infection 
of the human skin, were observed [53]. A novel dsRNA segment 
was identified, and the sequencing results revealed that the virus, 
named MrV40, belongs to the Totiviridae family. Comparison 
of the transcriptome of virus-infected Malassezia restricta cells 
to that of virus-cured cells revealed that transcripts involved in 
ribosomal biosynthesis were downregulated and those involved in 
energy production and programmed cell death were upregulated. 
Transmission electron microscopy had revealed significantly 
larger vacuoles in virus-infected Malassezia restricta cells. This was 
interpreted as an indication that MrV40 infection significantly 
alters Malassezia restricta’s physiology [53]. The report also 
indicates that viral nucleic acid from MrV40 can induce a Toll-
like receptor 3 (TLR3) mediated inflammatory immune response 
in bone marrow-derived dendritic cells, which suggests a viral 
element contributes to the pathogenicity of Malassezia [53]. The 
finding that in the infected cells expression of genes involved 
in ribosomal synthesis and programmed cell death was altered 
indicates that infection with mycovirus affects the physiology of 
the fungal host cells [53].

Most recently, a mycovirus containing Aspergillus flavus, 
isolated from the home of a patient with acute lymphoblastic 
leukemia was reported to reinduce genetic and cell surface 
phenotypes, characteristic of acute lymphoblastic leukemia, in 
the mononuclear leukocytes from patients with this disease in 
full remission, without any evidence of the disease, and long-term 
survivors when compared to negative controls [54].  In a related 
study, using enzyme-linked immunoassay (ELISA) test, plasma of 
patients with ALL had a positive immunological reaction, while 
three separate groups of controls, including healthy blood donors, 
patients with sickle cell disease, and those with a variety of solid 
tumors, were negative [55]. These findings may point to a role for 
the mycovirus containing Aspergillus flavus in leukemogenesis in 
acute lymphoblastic leukemia [31, 54-56].

Role of infections in carcinogenesis

For long, infections have been hypothesized to be, at least in part, 
causative factors for the development of cancer in general. Several 
infectious agents are reported to be carcinogenic or leukemogenic. 
The number of mechanisms by which each individual or group of 
infections can cause cancer, including leukemia, is diverse [57, 
58], and generally uncertain. These include, but are not limited 
to, induction of genetic and epigenetic changes, impairment of 
the host immune system and response, instability due to chronic 
inflammation, changes in signals regarding the balance between 
proliferation and antiproliferation, and other mechanisms.

Some of the hypotheses offered for childhood cancers in general, 
and acute leukemias in particular, include “population-mixing” 

and genetic mutation with delayed infection [61-72].  While these 
hypotheses differ in detail and mechanism, they share common 
ground, since they postulate that childhood leukemia occurs as a 
result of a response to infections. More recently, a revised two-hit 
model for the development of B-cell ALL has been proposed [70]. 
The “two-hit theory” suggests that the first step, which involves 
a predisposing genetic mutation, namely fusion gene formation 
or hyperdiploidy and production of pre-leukemic clones, occurs 
in utero [70]. The second step, which is postulated to be exposed 
to infections to trigger the critical secondary cellular mutations, 
is suggested to happen later in life [70] based on this theory, 
infections early in life are protective, but in a small sub-population, 
a later exposure triggers the critical secondary cellular mutations 
which result in the development of ALL [70]. It is estimated that 
the first step occurs in approximately 5% of newborns, but only 
one in 100 of the predisposed will go on to go through the second 
step and develop the disease. No indication as to the nature of 
infections that trigger the second step in the process is provided 
[68-72]. In support of the combination of genetics and infections 
to trigger the development of ALL, experimental models are 
available [73].  In murine experimental studies, pre-B ALL was 
initiated in mice heterozygous for PAX (PAX5+/-) upon exposure 
to common pathogens. Historically, several infective agents 
including viral, bacterial, fungal, and parasitic agents have been 
proposed to cause a variety of other cancers. Of all infections, 
viruses have been more often reported to be associated with 
certain malignant disorders [74].

Interestingly, while mycoviruses are relatively common in fungi 
in the natural environment, only rare reports regarding their 
combination and possible involvement in carcinogenesis have 
been reported [31, 54-56].

In recent years, several DNA and RNA viruses are reported 
to be related to carcinogenesis [74-118] and among the most 
commonly attributed viruses have been Epstein-Barr virus, 
human papillomavirus, human herpes virus-8, Hepatitis B and 
C viruses, Human immunodeficiency virus, Human T-cell 
Lymphotropic Virus type 1, etc. These have been classified as type 
1 carcinogenic agents by the International Agency for Research on 
Cancer (IARC). Carcinogenic effects of viruses often depend on 
additional factors such as genetic predisposition, various somatic 
mutations or immunosuppression of the host, or combination 
with exposure to chemical carcinogens.

Among herpesviruses associated with carcinogenesis, Epstein-Barr, 
a ubiquitous virus with large double-stranded DNA genomes, is 
the most investigated agent for its effect in the development of 
Burkitt’s lymphoma [75-80]. EBV can infect B cells and epithelial 
cells and establish latency in B lymphocytes and reactivate the 
lytic cycle. The surface glycoprotein, BLLE1 (gp350/220), binds 
to the CD21 receptor located on the B cells. EBV directly enters 
the latent gene expression state, resulting in the suppression 
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of the lytic cycle. While commonly known as an agent for the 
development of infectious mononucleosis, EBV is associated with 
several malignant disorders, such as nasopharyngeal carcinomas, 
B and T cell lymphomas, post-transplant lymphoproliferative 
disease, Hodgkin’s lymphoma, and leiomyosarcomas [75-80]. 
Individuals with decreased immunity and immune surveillance 
appear to be more prone to the malignant transformations caused 
by EBV. Malaria, which is common in the central part of Africa, 
may be a cofactor in the carcinogenesis of EBV [79]. 

Human papillomavirus that infects epithelial cells is reported to 
be associated with the development of cervical cancer, the second 
leading cause of mortality due to malignancy in women [82, 83]. It 
also may play a role in the development of head and neck tumors, 
cutaneous and anogenital cancers [81-84]. Co-factors such as 
use of hormonal contraceptives, tobacco smoking, high parity, 
HIV, Chlamydia trachomatis (CT), and herpes simplex virus 
type-2 (HSV-2) infections, immunosuppression, inadequate T 
cell response, and some dietary deficiencies may also be involved 
in this process. HPV has also been associated with penis, anus, 
vagina, vulva, mouth, and throat cancers [85-89].

Human herpesvirus-8 (HHV-8), also known as Kaposi sarcoma-
associated herpesvirus (KSHV), predominantly infects B 
lymphocyte [90]. It encodes latency-associated nuclear antigen 
(LANA) and is expressed in the Kaposi sarcoma, Castleman’s 
disease, and primary effusion lymphoma (PEL) cells [90, 91]. 
This may suggest that LANA plays a role in the pathogenesis 
of HHV-8–associated cancers.  It is demonstrated that the viral 
genome is expressed in these malignant disorders and encodes 
transforming proteins and anti-apoptotic factors. Kaposi sarcoma 
is one of the most common malignancies seen in HIV-infected 
patients [86, 89]. Studies have shown that HHV-8 tumorigenesis 
is mediated through molecular mimicry, hence viral-encoded 
proteins can potentially activate several cellular signaling cascades 
while evading immune surveillance. The development of Kaposi 
sarcoma is most common in individuals with immune depression 
and is the second most frequent tumor in acquired immune 
deficiency syndrome patients [93].

Human T-cell Leukaemia/Lymphotropic virus type 1 (HTLV-1) is 
a single-stranded RNA retrovirus that is known to be associated 
with adult T-cell leukemia/lymphoma. HTLVs are classified as 
the Delta-retroviruses genera of the Orthoretrovirinae subfamily 
[93-95]. Mechanisms of action of HTLV-1 in the development of 
adult T cell leukemia are not well understood. It is postulated 
that the HTLV-1 viral transactivator/oncoprotein, Tax, activate 
viral transcription and seizes the regulatory mechanism [96, 97]. 
This plays a role in the process through the activation of viral 
transcription and the hijacking of cellular growth and cell division. 
There is evidence, however, that HTLV-1 infection may not by 
itself be sufficient to cause this transformation. Some findings 
suggest that the reduced diversity, frequency, and function of 

HTLV-1 specific CD8+ T cells of the host may play a role in 
the development of adult T-cell leukemia. There is a significant 
latency, which can be many years after HTLV-1 infection and the 
development of T-cell leukemia.  HTLV-1 viral transactivator/
oncoprotein Tax, which is a regulatory protein capable of viral 
replication and T-cell transformation, is suspected to be involved 
in the progression from clinical latency to the development of 
T-cell leukemia [96, 97]. 

Hepatitis B virus (HBV), a DNA virus of hepadnaviridae family, 
and hepatitis C, an enveloped RNA virus of the flavivirus family, are 
found to be associated with carcinogenesis in certain populations 
[97-103]. Epidemiological studies reveal a role for these viral 
agents in hepatocellular carcinogenesis. Coinfection with both 
viruses appears to carry a synergistic risk for the development 
of this disorder. Hepatitis C virus is an enveloped RNA virus 
that is capable of causing acute and chronic hepatitis. Chronic 
infection with the hepatitis C virus can result in the development 
of cirrhosis, which in turn, in a small sub-population, can lead to 
hepatocellular carcinoma [102, 103].

To date, Merkel cell polyomavirus (MCPV) is the only polyomavirus 
that is associated with human cancer in the immunocompromised 
population [105-107]. This virus contributes to the development 
of Merkel cell carcinoma (MCC).

Individuals infected by the human immunodeficiency virus are 
found to have an increased risk of developing certain cancers, 
including Kaposi sarcoma and non-Hodgkin lymphoma [109-114]. 
The acquired immunodeficiency syndrome (AIDS) caused by 
HIV, results in the progressive depletion of CD4+T lymphocytes, 
resulting in the deficiency of cell-mediated immune system. 
Patients with AIDS are at risk for high-grade immunoblastic 
lymphoma, low-grade lymphoma, and central nervous system 
lymphoma. Liver, lung, breast, cervical carcinoma, anal and 
other cancers have also been found with more frequency in adult 
patients with HIV and regarding the liver malignancy, in those 
who are co-infected with both HBV and HIV in certain endemic 
areas [109-114].

The carcinogenesis of some other viruses such as Simian Virus 40 
(SV40) is not certain. SV40 was suggested, but not always proven, 
to increase the risk of developing mesothelioma, lymphomas, 
brain and bone cancers [115-118].

Mycoviruses

Mycoviruses are widespread worldwide, infect fungi, and in 
several ways can alter the normal function of their host, including 
alterations on fungal phenotype, affecting mycotoxin production, 
morphology, pigmentation, asexual and sexual sporulation, and 
growth. Mycoviral infection is persistent and normally does not 
result in the demise of the host. Fungi can be infected with two 
or more unrelated mycoviruses. Most mycoviruses have double-
stranded RNA (ds RNA) genomes, however, approximately 30% 
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have positive-sense, single-stranded RNA (+ssRNA) genomes, 
with one family having a circular ssDNA genome. Currently, the 
International Committee on Taxonomy of Viruses has classified 
mycoviruses into 22 taxa (21 families and one genus). Some 
mycoviruses have a close relation to known human pathogens. 
For example, the family Mymonaviridae belongs to the order 
Mononegavirales, along with Ebola, measles, mumps, Nipah, 
rabies, and human respiratory syncytial virus. Families Metaviridae 
and Pseudoviridae belong to the order Ortervirales, which also 
includes human immunodeficiency virus and retroviruses.

Even though mycoviruses have global distribution affecting fungi 
including those with which humans come in contact frequently, 
their possible role on health is poorly investigated. Most 
investigations of the effects of mycoviruses have concentrated 
on using those which have transmissible hypovirulence as a 
biocontrol method for control of crop-related fungal infestation 
[31, 120, 121]. On the opposite side, hypervirulence induced by 
mycoviruses resulting in increased fungal pathogenicity can also 
occur. These changes point to the importance of mycoviruses and 
their ability in changing the fungal phenotype, which potentially 
can affect their pathogenicity. The combination of mycovirus 
and fungus appears to create an organism that biologically is 
significantly different from the usual host. Some medical studies 
have concentrated on the possible use of mycoviruses as future 
therapeutic agents for the biological control of pathological 
invasive fungi [121].

As noted, based on serological and cellular studies it is hypothesized 
a possible role for a mycovirus infected Aspergillus flavus in the 
leukemogenesis of B-cell acute lymphoblastic leukemia. These 
investigations may indicate that mycovirus containing Aspergillus 
flavus may have a part in the mechanism of leukemogenesis in 
ALL. Furthermore, it provides a constant infectious agent for the 
so-called two-hit theories combining a genetic mutation and an 
infection for the genesis of ALL [56, 70]. The findings ultimately 
have the possibility of producing a test for identifying those who 
have the potential for the development of ALL, a diagnostic test 
for this disease, and a vaccine to prevent it [122, 123]. The possible 
role of mycovirus containing fungal agents in carcinogenesis, in 
general, needs further investigation.

Summary

Some infection organisms appear to have an integral role in 
certain carcinogenic events. These include members of viral, 
bacterial, and parasitic groups. In particular, viruses appear to 
induce diverse biological pathways to carcinogenesis, evidenced 
by the presence of the viral gene products in some cancers and 
precancerous cells. For example, in malignancies such as cervical 
carcinoma, the DNA specific to the human papillomavirus appears 
to integrate into the host cell genome, and viral oncoproteins E6 
and E7 consequently disrupt natural tumor suppressor pathways 
which culminates in the proliferation of cervical carcinoma cells. 

Recent findings revealing that the plasma of patients with ALL 
immunologically react to the products of a mycovirus containing 
Aspergillus flavus is of interest and represents the presence of 
factors that can be used for clinical interventions. Furthermore, 
exposure of mononuclear leukocytes of these patients to the 
products of the above-mentioned organism was found to 
reproduce genetic and phenotypic characteristics of ALL, which 
is of great significance. This may provide a constant infectious 
agent for the so-called two-hit theory. Mycoviruses are reported to 
be able to significantly alter the biological characteristics of their 
host. The possible role of mycoviruses, with and without their 
fungal host, has been poorly investigated in human diseases in 
general, and cancer and leukemia in particular, and this unmet 
need must be addressed.
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