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Description

Modern pathology practice is moving toward a digital image 
format, cumulating in utilizing computer monitor screens to 
examine scanned histology slides. This process of digitization of 
glass slides, in combination with the development of specialized 
software tools to identify and measure features previously observed 
via a microscope, has brought about digital image analysis on 
tissue sections. Tissue image analysis, when performed optimally, 
can result in highly precise and reproducible results. We will 
briefly cover the timelines of the digital analysis for scanned tissue 
slides and outline the current state of available software tools.

Digital Image Analysis 

Analyzing images with objective tools is as old as microscopy itself. 
Leeuwenhoek developed a system to measure microscopic objects 
in the 17th century [1]. When digital images became available 
with digital cameras, measurements could be extracted from 
digitized tissue slides such as nuclear shape, nuclear size, cellular 
circumference, cellular texture, area of certain stain chemical or 
immunohistochemistry (IHC) stain, and a number of cells in a 
selected area, etc. [2]. They are obtained by edge detection and cell 
segmentation [3]. When undertaking quantification of biomarkers 
such as IHC stains, image analysis tools can be of great value to 
standardize the analysis as well as minimize bias, subjectivity, and 
variability in the measured data. Typical examples include PD-L1 
scoring and HER2 scoring.

Digital Image Analysis and the Introduction of 
Whole Slide Imaging 

Despite many incremental advances throughout the decades, 
digital image analysis remained unchanged until the advent of 
whole slide imaging (WSI) in the early 2000s [4]. With WSI, the 
traditional histology glass slide is digitized via a slide scanner to 
be displayed on a monitor screen at a similar resolution as light 
microscopy. Compared to the traditional analog workflow of tissue 
sections being prepared and viewed under a microscope, the new 
digital workflow requires additional equipment (slide scanner, 
image storage, and digital viewing workstation), trained personnel, 
and specific quality control steps for quality control of scans, all of 
which require increased laboratory resources [3]. However, there 
are multiple advantages of digital workflow, including ease of case 
sharing between pathologists, ease in organizing teaching slides, 
and extraction of complex data in a highly reproducible fashion 
via specialized digital image analysis software [2]. The market is 
currently rapidly expanding with new companies that develop 
software for extracting relevant information from WSI images 
using artificial intelligence (AI) algorithms, a step beyond the 
traditional digital image analysis.

Evolution of Artificial Intelligence 

AI provides automated methods for data analysis. Its technique 
is based on the ability of the machine to learn information 
from previously saved data in databases and improve itself for 
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better diagnostic purposes [5]. The AI frameworks have evolved 
throughout the decades. The first conventional AI algorithms 
included support vector machine (SVM) and neural network 
(NN). These techniques were followed by the new sophisticated 
deep learning (DL) algorithms such as convolutional neural 
network (CNN), recurrent neural network (RNN), long short 
term memory (LSTM), and extreme learning model (ELM) [5].  
DL, the newest type of AI, has largely demonstrated itself as the 
most effective and reliable technique when applied to the medical 
field. It is a growing innovation trend in data analysis and has 
been termed one of the ten breakthrough technologies of 2013 
[6]. Since DL presents in many algorithmic formats, it is not 
considered a single technique. Instead, DL can be described as 
the latest generation of artificial neural networks, with the neuron 
being the fundamental unit.  DL consists of multiple layers of 
neurons lying between input and output layers that permit higher 
levels of abstraction and improved predictions from data input 
[7]. Each neuron receives the input data from multiple neurons 
of the previous layer and then uses unsupervised learning to 
find certain characteristic features that will be filtered and added 
together to ultimately generate an output to be communicated 
to the next layer. Increasing the number of layers allows for more 
features to be detected and more complex patterns to be learned 
[8]. DL has been applied to a wide range of domains, from speech 
recognition [9-13] to image analysis [14-16] and natural language 
processing [17-19]. In recent years, DL techniques have become 
the state of the art in computer vision. A specific DL neural 
network subtype, the convolutional neural network or CNN 
[20, 21], has become the de-facto standard in image recognition 
and has been shown to approach human performance in various 

tasks [7]. Their level of performance has far exceeded that of 
the traditional technique of digital analysis of measurements 
by edge detection and cell segmentation.  These CNN systems 
excel by learning relevant features directly from raw data in large 
image databases; this contrasts with the more traditional pattern 
recognition techniques, which rely on detecting manually crafted 
quantitative features [22]. 

CNN systems for digital image analysis have greatly benefited 
from parallel processing since most image operations are based 
on matrix manipulations [8]. Parallel processing significantly 
decreases computing time by performing all similar matrix 
operations at the same time instead of in a linear sequence. The 
computer graphics cards, known as graphics processing units 
(GPUs), contain hundreds or thousands of processing cores and 
significantly increase the computational speed. The core element 
of the CNN algorithm is convolution [23], an operation in image 
processing using kernels (filters), to detect certain characteristics 
of an image.  Mathematically, a convolution is done by multiplying 
the pixels’ values in the image patch by a kernel matrix; this 
effectively enhances the value of an image patch by adding the 
weighted values of all the neighboring pixels together. By moving 
the kernel across the input image, one obtains the feature map 
as a filtered image. As shown in Figure 1, the CNN model [24] 
has the following processing pipeline for the detection of visual 
categories: the convolutional layers perform feature extraction 
consecutively from the image patch to higher-level features, 
followed by the max-pooling layers’ down-sampling to reduce 
the amount of computation in the network, finally, the fully-
connected layers provide a prediction based on the given features.

Recent studies showed that CNNs are extremely effective in object recognition for digital images. Many medical image studies have 
started to apply CNNs to a wide range of applications [14-16], and promising results have been emerging from recent studies [7, 20-22]. 
The study domains included: metastatic breast cancer in WSI of sentinel lymph node biopsies [26], skin cancers [27], HER2 status in 
breast cancer [28], Gleason scoring for prostate cancer [29], Ki-67 labeling index for meningiomas [30], among others. We will discuss 
the application of CNNs to the diagnosis of lymphoma.

Figure 1: Processing pipeline of a convolutional neural network for the detection of visual categories in images ([25], with permission).
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Convolutional Neural Networks and Diagnosis 
of Lymphoma

Lymphoma is a clonal malignancy of lymphocytes, either T cells 
or B cells. The different lymphoma entities are typically first 
suspected by their pattern of growth and the cytologic features of 
the abnormal cells via light microscopy of Hematoxylin and Eosin 
stained tissue sections. Immunophenotyping is typically required 
for diagnosis with flow cytometry and/or immunohistochemical 
stains. In addition, cytogenetics, molecular pathology results, 
and clinical features are often needed in finalizing the diagnosis 
of certain lymphoma types [31]. Lymphoid malignancies are 
diagnosed in 280,000 people annually worldwide and include 
at least 38 entities according to the World Health Organization 
(WHO) Classification of Lymphoid Malignancies [31]. Due to 
subtle differences in histologic findings between various types of 
lymphomas, histopathologic screening often presents a challenge 
to practicing pathologists.  Moreover, lymph node diseases 
are not restricted to malignancies; reactive and inflammatory 
changes due to infections which can have similar clinical and 
pathological presentations as lymphomas should always be part 
of the differentials. Thus, there is a need to relieve the workload 
on pathologists by obtaining automated software for screening 
purposes.

The  recent  introduction of  digital  Whole  Slide  Imaging (WSI)  opens 

an opportunity for automated identification of histopathologic 
features of lymphomas [32]. The quality of the images is pivotal 
for optimal microscopic interpretation. Fortunately, digital image 
acquisition has improved substantially in recent years with the 
implementation of instrumentation capable of acquiring data at 
very high rates and with excellent resolution [32]. Only two WSI 
platforms have so far received the Food and Drug Administration 
(FDA) approval for primary surgical pathology in the US beyond 
the scope of research [33]. The first approval was granted in 2017 
to the Philips IntelliSite Digital Pathology Solution. It is a closed 
system that comprises a scanner/image management system and 
display. The approval does not extend to frozen sections, cytology, 
or non-formalin-fixed paraffin-embedded specimens. In 2020, the 
second platform to have FDA approval for primary diagnosis is 
the Leica Biosystem’s Scanner AT2 DX.

It has been noted that color variations in the tissue exist between 
various staining techniques and stain color normalization 
techniques are needed to alleviate such variations in training 
and testing images for the CNN models [34]. It is important to 
have the results confirmed in multi-center studies using different 
staining protocols and different WSI instruments.

As mentioned above, the image interpretation process of digital 
slides is actively studied in diagnostic medicine, particularly with 
the advent of DL which made considerable contributions to the 

realm of diagnostic pathology. Hematopathology has also earned 
its part in this digitalization movement. Recent projects have 
shown promising results using DL to detect lymphoma with WSI.

Recent Deep Learning Studies on Lymphoma 
Diagnosis

Although DL is an active research field, its application to the 
microscopic diagnosis of tumors is relatively new. Most published 
work has focused on diagnosis between two disease entities, 
between benign tissue and one specific tumor, or grading for a 
known tumor, making it difficult to assess the practical value of the 
designed CNNs. Fauzi FA, et al. (2015) [35] conducted a project 
for automated grading of follicular lymphoma and confirmed the 
usefulness of the method in tissue grading. Another study using 
the Aperio AT2 instrument for WSI scanning for image analysis 
showed 82.5% concordance between the pathologists and the 
trained algorithms for subtyping of DLBCL [36].  A previous study 
was conducted by Orlov NV, et al. (2010) to classify lymphomas 
in one of the following three types: small lymphocytic lymphoma, 
follicular lymphoma, or mantle cell lymphoma using spectral 
analysis with a weighted-neighbor distance (WND) algorithm [37]. 
This study reported a high accuracy rate of 99%. However, only 
a small number of 30 lymphoma cases were used which did not 
provide an adequately rigorous validation for the model.

A study by El Achi H, et al. (2019) [38], was the first robust one 
to get closer to actual practice by exploring how DL can be used 
to accurately classify a test case as one of the four non-Hodgkin 
lymphoma (NHL) entities: benign lymph node, diffuse large 
B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), or small 
lymphocytic lymphoma (SLL). This study provided a proof of 
concept for incorporating automated lymphoma diagnostic 
screening into future pathology workflow to augment the 
pathologists’ productivity. CNN was used to build a lymphoma 
diagnostic model.  The software was written in the Python language, 
together with TensorFlow [25] and Keras [39], two important 
Python libraries particularly useful in DL modelling. Parallel 
processing was based on NVIDIA GPU with Compute Unified 
Device Architecture (CUDA) [40]. WSI images of Hematoxylin 
and Eosin slides were obtained for 128 cases including 32 cases 
for each diagnostic category [41, 42]. Four sets of 5 representative 
images, 40 × 40 pixels in dimension, were taken for each case.  
A total of 2,560 images were obtained from which 1,856 were 
used for training, 464 for validation, and 240 for testing. For 
each test set of 5 images, the predicted diagnosis was combined 
with predictions of five images in the selected set. The test results 
showed excellent diagnostic accuracy at 95% for image-by-image 
prediction and 100% for set-by-set prediction (Table 1 and Table 
2, respectively). Out of 240 test images, a total of 228 images were 
correctly diagnosed by the CNN model, and the remaining 12 
images were given incorrect diagnoses, yielding an overall 95% 
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accuracy for diagnostic prediction (Table 1). Among the 12 
images with a lack of concordance between the observed and the 
predicted diagnosis: 4 SLL images were predicted as benign, 4 
other SLL images were predicted as DLBCL, and 4 benign images 

were predicted as BL.  It appears that diagnosis based solely on 
one image is too stringent to be of practical value. Instead, the 
final diagnosis needs to be based on all the five representative 
images to exclude outliers for a given set.

Strength and Limitation of Deep Learning in 
Lymphoma Diagnosis

The strength of the most robust study by El Achi H, et al. (2019) 
[38] lies in the inclusion of 4 lymphoid diseases and in focusing on 
the more frequent NHL types, taking DL a step closer to practical 
pathology work. Moreover, it included 128 cases collected from 
two databases generated at different institutions. This variety of 
cases from different populations and institutions combined with 
the successful results confirmed that the algorithm surpasses the 
inter-laboratory variations in the tissue processing as well as the 
quality and type of slides staining. This contrasts with the human 
eyes that must adapt to any modification of the staining, a difficult 
and time-consuming process. 

On the other hand, the current limitations of this preliminary 
study consist first in including only four histologic categories, not 
yet practical for actual clinical use in hematopathologic diagnosis. 

The number of cases included in that study is 128, a substantial 
number that generates 2,560 digital images but may still be 
considered limited for DL projects which typically include many 
more cases [8].  Since DL performs better with a large sample 
volume, the database can be increased in size in the future by 
applying the “Data Augmentation” methods such as random 
cropping, image rotation, image inversion, etc. [43]. Finally, 
the future design of CNN models could benefit from a process 
known as “transfer learning” that helps improve the training 
method. Transfer learning is based on exploiting a pre-trained 
algorithm and calibrating it for a new application. The rationale 
behind applying the technique resides in the fact that a pre-
trained network (such as one for gynecology or gastroenterology) 
has already learned to extract abstract features from the images 
and this network can be expanded to hematopathology; a process 
that will speed up training the model [44, 45].

Table 1: Accuracy in predicting diagnosis using one single image at a time ([25], with permission).

Observed Diagnosis

Predicted Diagnosis

 Benign DLBCL BL SLL

Benign 56  0 0 4

DLBCL  0 60  0  4

BL  4 0 60  0

SLL  0  0 0 52

Accuracy: 228/240=95%. Legends: DLBCL: diffuse large B cell lymphoma; BL: Burkitt lymphoma; SLL: 
small lymphocytic lymphoma

Table 2: Accuracy in predicting diagnosis for sets of 5 images using majority voting (3 out of 5 images for each set must agree) ([25], 
with permission).

Observed Diagnosis

Predicted Diagnosis

 Benign DLBCL BL SLL

Benign 12  - - -

DLBCL  - 12 - -

BL  -  - 12  -

SLL  -  - - 12

Accuracy: 48/48=100% Legends: DLBCL: diffuse large B cell lymphoma; BL: Burkitt lymphoma; SLL: small 
lymphocytic lymphoma
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Current Status of Deep Learning in Lymphoma 
Diagnosis

Transfer learning, in a globally-optimized platform with multiple 
pre-trained CNNs, has been recently applied and has achieved 
100% accuracy in DLBCL diagnosis [46]. Some architectures, 
such as Efficient Net [47], use a compound scaling method, 
which allows the smaller size and higher speed without loss of 
accuracy. CNNs have also been used to predict the probability of 
large cell transformation in follicular lymphoma and CLL from 
bone marrow biopsies [48]. Another technique that has been 
used recently is “weakly supervised learning”. In most supervised 
learning techniques, the training slides have to be labeled in 
detail at the level of patches or pixels, which is a very painstaking 
process. In weakly supervised learning, the training slides can be 
labeled as a whole such as “cancer” if there is any cancer on the 
slide, or as “not cancer” if there is no cancer anywhere on the slide 
[49]. Other supervised learning techniques include regression, 
which can be used to locate the position of the tumor on the 
slide, and segmentation, which can be used to digitally highlight 
the tumor area. Recently, some “attention-based” models have 
been tried which use a region selection mechanism to focus on 
the most relevant areas for diagnosis. Some models use multi-
magnification networks which incorporate image patches at 
different magnifications to better capture the context. There 
are also variants of CNNs that use a dense scanning mechanism 
that shares computations in overlapping regions. This can greatly 
increase the speed of inference. A new pooling layer, called the 
“anchor layer”, can also be used which can reconstruct the loss 
from the max-pooling layers. Unsupervised transfer learning has 
also been tried, which uses learned mapping functions, rather 
than directly applying learned features to the target task [49].

Conclusion

In summary, recent deep learning studies provided a proof of 
concept for incorporating automated lymphoma diagnostic 
screening using digital microscopic images into the pathology 
workflow to augment the pathologists’ productivity. Future 
studies will need to include far more histologic entities and many 
more cases for training, validation, and testing. Once this has 
been achieved, the CNN models would be potentially suitable to 
improve the efficiency of the diagnostic process in histopathology. 
This could in turn lead to adapted protocols, where pathologists 
would perform a more thorough analysis on difficult cases, as 
the straightforward cases have already been handled by a DL 
system. Most researchers believe that within the next 15 years, 
DL-based applications will play an essential role in the pathology 
laboratory, working alongside pathologists to provide a more 
timely and accurate diagnosis. The pathologists will continue to 
be instrumental in both the use and operation of image analysis 
workflows, which will continue to evolve and transform both 
clinical and research activities.
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