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1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-
Co-2) infection emerged as a pandemic in early 2020 year and is 
commonly known as COVID-19 [1]. The first case of COVID-19 
in pneumonia patients was detected in Wuhan city, China in 
December 2019. In the beginning, pneumonia patients showed 
normal respiratory infection, which rapidly transformed into 
acute respiratory syndrome [2]. Acute respiratory syndrome was 
associated with chronic inflammation. Chronic inflammation 
occurs when an antigen is constantly present in the body, and 
the immune system is continuously activated to remove the 
infection. This constant inflammation causes some degree of 
alteration in the drug-binding proteins [3-5].  Recent studies have 
been suggested that inflammation can modulate transporters 
and drug-metabolizing enzymes (TDMEs) [6]. The downstream 

regulation of various hepatic and extrahepatic drug-metabolizing 
enzymes (DMEs) was already shown by some studies [7, 8]. 
Inflammation-induced alterations in the expression of a variety 
of membrane-associated drug transporters have recently been 
described [9]. Therefore, a better understanding of the impact 
of inflammation on TDMEs and its associated clinical outcomes 
would help to recognize the individual pharmacokinetic (PK) and 
pharmacodynamic (PD) variability of drugs. The SARS-CoV-2 
infection resulted in increased frequency of hospitalization and 
intensive care unit (ICU) admission [9]. This is considered a 
major clinical concern that critically ill patients are more affected 
by drug interaction that TDMEs are involved in the transport 
and metabolism of commonly prescribed drugs [10]. The high 
prevalence of acute and chronic inflammatory conditions, the 
modulation in the expression and activity of TDMEs may modify 
the PK/PD of drugs used in COVID-19 treatment (Figure 1).
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Based on the evidence, the Food and Drug Administration (FDA) 
approved some drugs that have been already used (Table 1) for 
the treatment of SARC-CoV-2 [11, 12]. In these drugs, remdesivir 
and favipiravir have been proven most promising against 
COVID-19 treatment. The lopinavir-ritonavir combination 
showed to be effective against COVID-19. Other antiretroviral 
drugs atazanavir and darunavir were also used. Anti-malarial 
drug hydroxychloroquine(HCQ) showed good results against 
COVID-19, and it has been used frequently in combination 
with other drugs [13], [14]. Irrespective of the antiviral drugs, 
dexamethasone showed little relief against COVID-19 but 
involved the increased risk of hyperglycemia. The initial clinical 
trial showed that Dexamethasone lowered the death of one-third 
of severe patients that were on a ventilator [15]. Sofosbuvir plus 
Daclatasvir in combination with Ribavirin was shown promising 
results to fight COVID-19 infection [16]. Fluvoxamine has also 
shown the potential in COVID-19 infected outpatients [17]. 
Molnupiravir, which can block the transmission of SARS-CoV-2 
within 24 hours, is used to treat COVID-19 infection [18]. Some 
anti-inflammatory and anti-complement drugs were also used 
either in combination or alone for the treatment of COVID-19 
patients.

This article will emphasize on the current state of knowledge 
and assume a PK and drug-drug interaction (DDI) potential of 
therapeutic agents used for co-morbidities and frequently used 
in intensive care for COVID-19 patients. Here, we present the 
subscription of inflammation on modulating the expression and 

activities of TDMEs and discuss its related clinical consequences 
of DDI based on drug metabolism and pharmacokinetics 
(DMPK) and finally provide the opinion on how to incorporate 
inflammation in pharmacological treatment.

2. Cytokine storm in COVID-19 patients 

Cytokine storm is a complex and robust inflammatory 
phenomenon initiated by a group of cytokines mainly pro-
inflammatory cytokines that are produced by the uncontrolled 
immune function. Adequate evidence showed very high levels 
of cytokines in severe COVID-19 patients. This cytokine storm 
is a range of cytokines, including interleukins (IL-1, IL-2, IL-
6, IL-7, IL-8, IL-10, IL-12, IL-17, IL-18), tumor necrosis factor-α 
(TNF- α), interferon-γ (IFN- γ), granulocyte colony-stimulating 
factor (G-CSF), granulocyte-macrophage colony-stimulating factor 
(GM-CSF) and monocyte chemoattractant protein-1 (MCP-1) [19-
27]. Cytokine targeted treatment in critical COVID-19 patents 
confirmed the presence of cytokine storm and showed the 
clinical advantages in hemophagocytosis [28, 29]. The COVID-19 
cytokine storm has shown variability as normal cytokine storms in 
several aspects [19, 28, 30]. Cytokine storm in COVID-19 consists 
of more inflammatory cytokines as well as have an abnormally low 
level of lymphocytes (lymphopenia),  suggesting that attributed 
to the innate immunity rather than adaptive immune cells [28]. 
This treatment approach is to manage ongoing inflammatory 
response by specifically or non-specifically targeting inflammatory 
cytokines or associated signaling pathways to resume the host 
immune regulatory system.

Figure 1: Modification in the expression of key transporters (ABC: ATP binding cassette and SLC: Solute carrier) and drug metabolizing 
enzyme (Cytochrome P450 and Phase II) mediated by acute immune response in SARC-CoV-2 (COVID-19) infection play a role in 
alteration of drug absorption distribution metabolism and excretion (ADME).
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3. Immunomodulation in COVID-19

3.1. COVID-19 association with inflammation

Cytokines are the distinct class of small cell-signaling proteins 
responsible for maintaining the homeostasis of the immune 
system. Many studies have shown that, in addition to direct viral 
damage, unrestrained inflammation causes disease severity in 
COVID-19 patients [31, 32]. The high expression of inflammatory 
components, including C-reactive protein (CRP), ferritin, and 
increased levels of inflammatory cytokines and chemokines were 
noticed in COVID-19 infected patients [33-35]. One study was 
conducted to measure serum interleukin IL-6, IL-8, IL-1β, tumor 
necrosis factor (TNF) in hospitalized COVID-19 patients (n = 
1484) for 41 days. Study results showed a high level of TNF-α 
IL-6, and IL-8 at the time of hospitalization. Particularly, when 
adjusting for disease severity, IL-6 and TNF-α serum levels were 
constantly independent and significant predictors of severity and 
death [36]. Some proinflammatory cytokines such as interferon-
gamma (IFN-γ), granulocyte-macrophage colony-stimulating factor 
(GM-CSF), macrophage colony-stimulating factor (MCSF), IL-12 
were elevated in COVID-19 patients [2].  The cytokine profile 
in severe COVID-19 patients showed similarities like cytokine 
release syndromes, such as macrophage activation syndrome, 
with augmented production of cytokines and of chemokines 
including CCl-2 (CC-chemokine ligand -2) CCL3 and CXL10 
(CXC-chemokine ligand -10) as well as the α-chain of the IL-2 
receptor. This phenomenon has driven the hypothesis that 
dysregulated stimulation of the phagocytes is accountable to 
COVID-19 associated hyper inflammation [35, 37]. Inflammation 
is normal in reaction to damage or pathogenic illness, but it 
seems that patients with noncommunicable diseases reveal pre-
heightened inflammatory levels. This can produce them subject 
to unrestrained inflammation when infected by the SARS-CoV-2, 
leading to a cytokine storm [38]. This is an excessive release of 
the cytokine in response to COVID-19 infection due to loss of 
regulation on the production of pro-inflammatory cytokines. 
Additionally, cytokine storm is anticipated to be the cause of acute 
respiratory distress syndrome (ARDS) and multiple organ failure 
[39, 40]. Obstructing these inflammatory elements can alter the 
developed immune response and stop lung destruction. IL-6 is 
the important target for anti-cytokine therapy and its elevation 
is mediated with a terrible diagnosis [29, 41, 42]. A monoclonal 
antibody against the IL-6 receptor named tocilizumab was used 
for the treatment of COVID-19 and demonstrated significant 
improvement in COVID-19 patients [43]. Another IL-6 receptor 
antagonist, sarilumab currently considered for COVID-19 
treatment [44].

3.2. COVID-19 association with the complement system

The Complement system performs as immune surveillance and 
responds rapidly against infection. However, when dysregulation 
of these powerful machineries (C3a, C3b, iC3, C3c C3dg, C5), 

can become harmful and incriminate as a pathogenic effector 
in various diseases including viral infection [45]. Initially, it was 
reported that complement activation is attenuated by poxviruses 
by secreting a protein that showed structural and functional 
homology to the complement regulatory protein [46]. Flavivirus 
also hijacks the same and HIV-1 conscripts host complement 
system into their virion [45]. In all these scenarios, C3 attached 
to the surface of viruses and virus perform the cleavage of C3 that 
may affect the host antiviral response [47]. Whether SARS-CoV-2 
exhibits such antiviral strategies remains to be answered.

COVID-19 mediated complement system 
activation

Promising, in-vitro, and in-vivo data analysis suggest that 
complement activation plays a crucial part in the pathogenesis 
and diseases seriousness of SARS-CoV and SARS-CoV-2. 
Gralinski LE, et al. (2018) found the effect of SARS-CoV infection 
using C3-/- mice and showed complement activation [48]. Mice 
after getting infected by SARS-CoV, in a 24-hour C3 activation 
product (C3a, C3b, iC3, C3c, and C3dg) were examined in the 
lungs. In the absence of C3, lung grievance and weight loss were 
significantly reduced, without altering the viral load, and cytokine 
and chemokine levels were found low as well in the C3 -/- mice. 
Moreover, factor B -/- or C4-/- mice also showed less weight loss 
[48]. These results showed that pulmonary pathology and SARS-
CoV infection-associated illness can be improved by activating 
the complement system [49]. Nucleoprotein (secreted N protein) 
dimer of SARS-CoV-1, SARS-CoV-2 and MERS-CoV activate 
the MASP-2 enzyme (mannan-binding lectin-associated serine 
protease -2). This is a primary enzymatic inhibitor of the lectin 
pathway [50]. Auto activation of MASP-2 starts to generate C3 
convertase and membrane attack complex (MAC). The interaction 
of MSP-2 and N protein attenuates lung injury. Human proteomic 
and metabolomics studies [51] along with these data suggest that 
coronavirus infection involves the activation of various pathways 
of the complement system. 

In Italy, a single-center case series study showed that elevated level 
of plasma complements protein C5a and sC5b-9 were observed 
in patients with mild illness (patients requiring continuous 
positive airway pressure) and serious critical illness (mechanically 
ventilated) COVID-19 [52]. In COVID-19 patients, complement 
fragment deposition has been found in multiple organs. Extensive 
deposition of C5b-9, C4d, and MASP-2 in the microvasculature 
induced septal capillary damage in the lungs of COVID-19 
patients who died because of respiratory failure [53]. Reports have 
been demonstrated that the absence of complement regulation in 
the kidney, mainly in the proximal convoluted tubule (PCT) cells 
makes these cells more responsive to complement-mediated injury 
[54, 55]. Recently, one study published a kidney autopsy report 
with strong C5b-9 staining and demonstrated that C5b-9 staining 
was prominent on the apical brush border of tubular epithelial 



21st Century Pathol-2-111| Page 4 of 22Volume 2, Issue 1Devendra Kumar et al.

Citation: Devendra Kumar, Neerja Trivedi and Arti Verma (2022) Immunomodulation may Affect the Efficacy of COVID-19 Medication by 
Changing Drug Metabolism and Pharmacokinetics, 21st Century Pathol, Volume 2 (1): 111

kidney cells along with deposition on glomeruli and capillaries 
and nucleocapsid as well as the spiked protein of SARS-CoV-2 
[56]. 

 This hypothesis also supported that SARS-CoV infection is 
associated with complement regulators of two genetic variants, 
CD55 (known as DAF) and FH [57]. Earlier it has been allied to the 
atypical haemolytic uremic syndrome (aHUS), age-related macular 
degeneration (AMD), and haploinsufficiency of complement 
regulatory protein [58]. Even though these associations are 
required to be assessed in independent cohort studies, they 
must be proposed the lectin activation and alternative pathways 
of the complement system in COVID-19 patients. Complement 
inhibition has offered an effective medication in COVID-19 
patients.

3.3. Auto-immune and metabolic disorders may affect the 
prophylaxis of COVID-19 patients

Some types of diseases like autoimmune & metabolic disorders, 
cancers, and infection have inflammatory conditions already. 
Elderly individuals, along with those pre-existing conditions, 
have shown in table 2, have demonstrated a higher possibility for 
developing severe COVID-19 conditions in addition to suffering 
a high risk of mortality and facing more chance of developing 
long-term complications. This pre-existing immunomodulation 
may affect the COVID-19 treatment by interfering with the 
DMPK of drugs in the COVID-19 medication. Results suggested, 
genetically and chemically induced model of various diseases 
mentioned in table 2, and analysis of transporters and CYPs in 
disease state is highly reasonable that dysregulation of intestinal 
and hepatic transporters expression and CYPs contribute to 
inconstant absorption and disposition of xenobiotics. That 
may be responsible for interpatient venerability in drug PK and 
therapeutic reaction [59, 60].

Table 1: Drugs that have been used for the treatment of COVID-19 
patients.

Drug used in COVID-19 treatment

Anti-Inflammatory drugs

Dexamethasone, Ruxolitinib, 

Baricitinib, Imatinib, 

Tocilizumab, Itolizumab, 

Maplazumab, Sarilumab

Anti-Complement drugs Eculizumab, AMY101

Antiviral-drugs

Remdesivir, Favipiravir, 

Ribavirin, Interferon, 

Lopinavir, Ritonavir, Darunavir, 

Atazanavir, Umifenovir, 

Sofosbuvir, Daclatasvir, 

Molnupiravir, Teicoplanin, 

LCB1

Antibiotics Tetracyclines, Azithromycin

Others 

Chloroquine, Hydroxy 

chloroquine, Ivermectin, 

ARDS-003, Fluvoxamine

Table 2: Pre-existing immunomodulatory diseases may affect the 
COVID-19 treatment.

Diseases Immunomodulatory 

effect 

References 

Rheumatoid Arthritis 
(RA)

IL-1β, IL-6, TNF-α 
and IFN-γ

[61]

Inflammatory bowel 
disease (IBD)

IL-1β, IL-6, TNF-α 
and IFN-γ

[62, 63]

Chronic renal failure 
(CRF)

IL-1β, IL-6, TNF-α 
and IFN-γ

[64]

Diabetes (T1DM, 
T2DM)

IL-1β, IL-6, TNF-α, 
IFN-γ and CRP

[65-68]

Obesity IL-1β, IL-6, TNF-α, 
IFN-γ and CRP

[65-68]

Human Immune 
Virus (HIV)

IL-1β, IL-6, TNF-α, 
IFN-γ

[59]

Cancer IL-1β, IL-6, IL-23 
and TNF-α,  

[69]

Age related macular 
degeneration

TNF-α, IL-1 β, IL-2, 
IL-4, IL-6, IL-10 and 
Complement protein

[70]

atypical hemolytic 
uremic syndrome 
(aHUS)

IL-6 and Complement 
proteins

[71]

Paroxysmal 
Nocturnal 
Hemoglobinuria 
(PNH)

IL-6 and Complement 
proteins

[71]

4. Alteration of drug transporters in response to 
immunomodulation   

In the acute immune response, proinflammatory cytokines such 
as IL-1β, IL-6, and TNF-α play an important role [72]. These 
locally forming immunomodulators disseminate in the circulatory 
system and generate a systemic effect by binding to cell membrane 
receptors on the vascular endothelium and parenchymal cells 
of the various tissues of the human body. During infection, 
the immune reaction represents a significant effect in chronic 
diseases, which are clearly involved in modifying drug elimination 
(clearance) by changing the absorption and metabolism activity of 
therapeutic drugs. Recently, some pre-clinical model studies also 
reviewed the absorption, downregulation of ATP binding cassette 
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(ABC) and solute carrier (SLC) in certain chronic inflammatory 
conditions [73]. 

P-glycoprotein (Pgp)/ABC and BCRP (breast cancer resistance 
protein) efflux transporters are vital proteins involved in the 
efflux of drugs. In addition, Pgp/ABC has been widely studied 
against the response of immunomodulation or inflammation. 
In humans, Pgp expression has been shown downregulated in 
intestinal epithelium cells in inflammatory conditions [74]. 
Human enterocyte cell line Caco-2 is used as a universal model 
for permeability research. It has been shown that Caco-2 was 
treated in conjunction with TNF-α showed downregulation of 
expression as well as Pgp activity [75, 76]. It is well documented 
about the association of Pgp mRNA level and protein expression 
diminished on the administration of IL-6 directly in invivo 
in mice or hepatic cell lines [77, 78]. Similar to Pgp, primary 
human hepatocytes cells also showed downregulation of BCRP 
expression as well as activity upon treatment with IL-6, and when 
these cells were treated with TNF-α this leads to the production 
of BCRP [79]. The treatment of IFN-γ, substantially decreased the 
mRNA expression of BCRP in primary human hepatocytes [80]. 
The human brain cell line showed a significant decrease in the 
BCRP expression and activity after treatment with IL-1β, IL-6, 
and TNF-α [81]. Proinflammatory cytokines are also thought to 
be important mediators of MRP2, as evidenced by the fact that 
IL-1β, IL-6, and TNF-α all significantly downregulate mRNA and 
protein expression of MRP2 in rat and human hepatic cell lines 
[82, 83]. The acute inflammatory response arbitrates changes in 
the expression of Pgp, BCRP, MRP2, and a few other important 
transporters [64, 76, 84-87].

The human repertoire of solute carrier (SLC) transporters as 
a means of tackling the immune-mediated disease. A study on 
inflammatory bowel diseases (IBD) patients showed that SLC 
transporters were altered due to inflammation [82], and mRNA 
expression level of SLC transporters (OATP2B1, OATP4A1, 
ENT1, ENT2, CNT2) in IBD patients was found dysregulated 
[82].  SLC expression is linked with the inflammation of the 
tissue and gives an indication that inflammatory signaling is 
involved in the regulation of disease [82]. Other than intestinal, 
the hepatic transporters are also involved in drug clearance. 
Considerable downregulation has been reported in hepatic 
transporters such as OATPB1, OCTN1, as well as Pgp and BCRP, 
after Citrobacter rodentium infection in mice as compared to 
control at mRNA levels [83]. This effect was not shown IL-6 or 
TNF-α lacking infected mice [83], again indicating the key role 
of these proinflammatory cytokines in controlling the expression 
and function of hepatic ABC and certain SLC transporters. 
Human hepatocytes have shown the downregulation of various 
transporters after facing the exposure of IL-6 [84].  These findings 
suggested that chronic inflammation can inhibit the expression 
and function of Pgp, ABC, MRP, and SLC transporters involved 
in drug pharmacokinetics and may occur in the intestine and in 

the liver as well, leading to decreased absorption [85]. Due to the 
inflammation, several transcription factors get activated and play 
a crucial role in the alteration of DMEs and transporters [86-90]. 
Several reviews have already available which explained the role 
of inflammation in the molecular mechanism of the transporters 
have been explained in the literature [88, 91, 92].

5. Alteration of drug-metabolizing enzymes in response to 
immunomodulation

In DMEs, CYPs are extensively engaged as the leading contributor 
to metabolic biotransformation of more than 60% of drugs 
[93]. Like drug transporters, reduced expression of CYPs and 
UDPGT has also been reported with the inflammatory response 
[73]. Immunomodulatory induced changes in hepatic CYPs 
expressions and activity are affected by signal molecules which 
are mainly cytokines, produced while progressing inflammation 
[94]. The regulation is an important factor in drug interactions 
because drug PK eventually will be altered based on disease type 
and produced immune response components, as well as the 
administered drugs [95, 96]. Many studies have described the 
immunomodulation (especially cytokine) induced CYPs activity 
modulation in different mammals [97-99] including humans 
[100, 101] in vitro in hepatocytes as well as in vivo in mice [102], 
rats [103], and humans [104]. Various diseases models like colitis 
[105, 106], and arthritis [107-109] have exhibited the reduction 
in the expression and activity of various hepatic CYPs. This 
inhibition exists to correlate with the rise in the concentration 
of proinflammatory cytokines (IL-6, TNF-α, IL-1β, IFN-γ, IL-2, 
and IL-1α) [105, 106, 108, 110]. Most proinflammatory cytokines 
are IL-1 [111-113], IL-6, TNF-α, and IFN-γ that have displayed 
suppression of CYPs expression and activity [114-116]. Other 
cytokines IL-2 and IL-10 also showed the same effect [117-119]. 

IL-6 is most abundantly present in the blood circulation of 
infected mice [105] and represses CY3A4 expression [120] and 
reduces CYP3A-dependent clearance of substrate drugs in the 
in vitro culture of human hepatocyte cells [121]. To prove this 
hypothesis, human hepatocytes cells were treated with an IL-6 
monoclonal antibody that prevented the decrease in IL-6 induced 
CYP3A clearance [121] and delivered the proof of IL-6 dependent 
CYP3A inhibition. Another study confirmed the inhibition after 
deletion of IL-6 encoding gene to prevent the downregulation 
of CYP2D and CYP3A in Clostridium rodentium infected 
mice [122]. One study showed that in rat hepatocytes, human 
recombinant IL-6 has shown concentration-dependent inhibition 
of phenobarbital mediated induction of CYP2B1/2 [123] and 
significantly suppressed the expression of CYP1A1, CYP1A2, 
and CYP3A4 at mRNA levels in different human hepatoma 
cell lines [124]. Chronic inflammatory response, either induced 
by turpentine or bacterial lipopolysaccharide, in rats, showed 
significant inhibition in hepatic CYP1A2, CYP2A5, CYP3A11, 
and CYP2C1 enzymes [125, 126]. Several studies have shown 
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that malignancies also have impacted the action of IL-6 on CYPs 
[127]. The role of IL-6 in cancer-mediated inhibition of hepatic 
CYP3A has been shown by producing such effect via monoclonal 
antibody against IL-6 [128] or IL-6 receptor [129] and this was also 
confirmed in IL-6 treated primary human hepatocytes by using 
IL-6 monoclonal antibody. Expression and activity of CYP1A1, 
CYP1A2, CYP2B6, and CYP3A4 enzymes were inhibited by IL-6, 
and it was also significant in intervening CYP1A2 and CYP3A4, 
induced by omeprazole and rifampicin, respectively. IL-6 also 
downregulates most phase II enzymes like UDPGT [84].

TNF-α is also released abundantly in the blood of infected mice. 
Like IL-6, similar experimentation has suggested that TNF-α also 
plays role in CYP downregulation, when treated with biological 
medication that deactivates soluble TNF-α [130] and deletion of 
TNF-α receptor gene in mice infected with Citrobacter rodentium 
[131], prohibited the downregulation of CYP3A11 and CYP3A25. 
Infliximab, an immunosuppressive drug is generally used for the 
treatment of rheumatoid arthritis.  Pre-adjuvant arthritic rats were 
treated with infliximab, which resulted in a significant increase in 
total protein content of CYP than in untreated rats [132]. These 
results along with hepatic in-vitro experiments were demonstrated 
that TNF-α significantly regulated CYPs levels (Kinloch 2011, 
Nygode 2010) [122, 131] and provides strong evidence in CYP 
downregulation.

IL-1β has demonstrated the inhibition of CYP3A1 protein 
expression by 60 % in-vitro rat hepatocyte and reduced its activity 
within 6 hours [133].  Numerous studies have shown that the 
downregulation of CYPs due to pro-inflammatory cytokines 
is impeded by NO synthase inhibitors [134] and proteasome 
inhibitors (Lee CM, et al. (2009)) [133]. Stimulation of the NO 
synthase [135] is promoted by pro-inflammatory cytokines such 
as IFN-γ, IL-1β, and TNF-α during inflammatory responses that 
precede to increase NO synthesis which inhibits CYPs expression 
and activity. NO prompts proteasome-based CYP3A1 inhibition 
[133]. These results suggest that the IL-1β inhibits the functional 

activity of CYP in the early stage of the inflammatory process. 
Authors [95] investigated the effects of IL-1β, IFN-γ, TNF-α, and 
TGF- β on the mRNA expression level of CYP2B6 and CYP2C9 
in human hepatocytes comparing with response to control. The 
expression of CYP2C9 and CYP2C19 are decreased while in 
the presence of IL-6 and TGF- β. CYP2C8 and CYP3A4 were 
downregulated by all cytokine treatments.

Extrahepatic CYPs were also inhibited by pro-inflammatory 
mediators [142-145]. Although the cytokine-induced inhibition 
of CYPs is not fully demonstrated, it is anticipated and 
strongly recommended that a decrease in CYPs mRNA strongly 
insisted on a transcriptional mechanism that altered various 
transcriptional factors [146, 147]. Aryl hydrocarbon and nuclear 
factor kappa B (NF-kB) receptor are the regulatory transcription 
factors. In humans, rats, and mice, they are actively involved in 
controlling the gene expression of various CYPs in response to 
inflammation [146-149]. Pyrrolidine dithiocarbamate is a well-
known example of an NF-kB inhibitor that has the capacity to 
prevent the inflammatory reduction in CYP1A2 activity [150, 
151]. Inflammatory stimuli influence NF-kB, which further 
regulates the CYPs expressions. PXR (Pregnane X Receptor) 
targets a variety of genes, including CYP3A4. PXR is regulated by 
NF-kB factors, with NF-kB activation suppressing glucocorticoid 
receptors (GR) and decreasing the expression of the constitutive 
androsterone receptor (CAR) and its related CYP gene expression 
[126, 152, 153]. Highly elevated cytokines and downregulation 
of their targets during COVID-19 infection have been shown in 
table 3. It is established that alteration in pharmacokinetics of the 
prescribed drug can alter the activity of DMEs and the expression 
of drug transporters, which can contribute to interindividual 
heterogeneity in drug efficacy and toxicity. Generally approved 
drugs for COVID-19 medication, and their drug interaction 
targets for transporters and drug-metabolizing enzymes have been 
shown in Tables 4 and 5, respectively.

Table 3: The regulation of transporters and drug metabolizing enzymes by proinflammatory cytokines.

Proinflammatory 

Cytokines 

Species Downregulation References

Transporters DMEs

IL-1β Mouse MRP2, OATP1, 

OATP2, BSEP

CYP1A, CYP2B, CYP2C9, CYP2C19, CYP2D, 

CYP3A, UGT1A

[95, 135] 

Human CYP2C8, CYP3A4 [95, 121, 136]

IL-6 Mouse  P-gp, MRP2, OATP1, 

OATP2, BSEP

CYP1A2, CYP2A5, CYP2E1, CYP3A11  [78, 125, 135, 137]

Human - CYP1A2, CYP2B6, CYP2C8, CYP2C9, 

CYP2C19, CYP3A4

[95, 121, 138]

IFN-γ Mouse - CYP1A, CYP2B, CYP2C9, CYP2C19, CYP2D, 

CYP3A, UGT1A

[135]

Human - CYP2B6, CYP2C8, CYP2C9, CYP3A4 [95]
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TGF-β Mouse - CYP1A, CYP2B, CYP2C9, CYP2C19, CYP2D, 

CYP3A, UGT1A

[139]

Human - CYP2C8, CYP2C9, CYP2C19, CYP3A4 [95]

TNF-α Mouse MRP2, MRP3, 

OATP2

CYP1A, CYP2B, CYP2C9, CYP2C19, CYP2D, 

CYP3A, UGT1A

[135, 137]

Human - CYP2C8, CYP3A4 [95, 137]

Table 4: Transporter mediated drug-drug interaction of therapeutic agents used to treat COVID-19.

    Drug Involvement of Drug Transporter Reference

1 Remdesivir $Pgp $OATPB1, IOATPB1, IOATPB3, IBSEP, IMRP4, INTCP [140]

2 Favipiravir  IOAT1, IOAT3 [141]

3 Ribavirin $NT, $ENT1 [142, 143]

4 Interferons $OAT2 [144]

5 Lopinavir $Pgp, $MRP1, $MRP2, $OATP1A2, $OATP1B1 IPgp, IBCRP, 
IOATP1B1, IOATP1B3, IOATP2B1

[145-147] [148-151]

6 Ritonavir $Pgp, $MRP1, $MRP2, IPgp, IMRP1I, BCRP, IOATP1A2, 
IOATP2B1, IOATP1B1, IOATP1B3, IOCT1, OCT2

[147] [152]

[148, 151, 153-159]

7 Chloroquine $OATP1A2 [160, 161] 

8 Hydroxy

chloroquine

IPgp, IOATP1A2 [160-162] 

9 Dexamethasone $Pgp, $MRP2 [163, 164] 

10 Umifenovir Data Unavailable

11 Teicoplanin Data Unavailable

12 Nitazoxanide Data Unavailable

13 Ivermectin $Pgp, IBCRP, IMRP1, IMRP2, IMRP3 [165-167]

14 Atazanavir $Pgp, $MRP1, $MRP2, IOATP2B1 [168, 169] [150, 151, 170, 171]

15 Azithromycin $Pgp and $MRP2, $OATP [172, 173] 

16 Darunavir $Pgp, $OATP1A2, OATP1B1, IPgp, IOATP2B1 [174] [175-177]

17 Ruxolitinib $OATP1B1, and $OCT1, $NTCP, IPgp, IBCRP [178, 179]

18 Baricitinib $P-gp, $BCRP, $OAT3, $MATE-K [180, 181]

19 Imatinib $Pgp, $OATP1B3 [182, 183]

19 Fluvoxamine Unclear

20 Canabinoids $Pgp, $BCRP, $MRPs [184]

21 Sofosbuvir $Pgp, $BCRP [185] 

22 Daclatasvir $Pgp, IPgp, IBCRP, IOAT1B1, IOAT1B3 [186] 

23 Molnupiravir Data Unavailable 
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22 Itolizumab Data Unavailable

23 Tocilizumab Data Unavailable 

24 Meplazumab Data Unavailable 

25 Sarilumab Data Unavailable

25 Eculizumab Data Unavailable

26 AMY101 Data Unavailable

27 ARDS-003 Data Unavailable

28 LCB1 Data Unavailable

$-substrate of, I-Inhibitor of, Pgp; P-glycoprotein, OAT; Organic Anion Transporter, OATP; Organic Anion Transporter Protein, 

BCRP; Breast Cancer Resistance Protein, MRP, Multidrug Resistance Associated Protein, OCT; Organic Cation Transporter, NT; 

Nucleotide Transporter, ENT; Equilibrative Nucleoside Transporter, NTCP; Sodium/Taurocholate Co-transporting polypeptide, 

BSEP; Bile Salt Export Pump.

Table 5: CYP mediated drug-drug interaction of therapeutic agents used to treat COVID-19.

Drug Metabolism Reference

1 Remdesivir $CYP2C8, $CYP2D6, $CYP3A4, ICYP3A4 [140]

2 Favipiravir  $AO, ICYP2C8 [141], [187]

3 Ribavirin Phosphorylation, Deribosylation, Amide hydrolysis [181]

4 Interferons $CYP1A2, $UGT2B7, ICYP3A, ICYP2D6 [144, 188] 

5 Lopinavir  ICYP3A4 [145-147]

6 Ritonavir $CYP1A2, $CYP2C8, $CYP2C9, $CYP2C19, ICYP3A4, ICYP2D6 [189] [152]

7 Chloroquine $CYP2C8, $CYP3A4 $CYP2D6 [190, 191]

8 Hydroxy

chloroquine

$CYP2C8, $CYP3A4 $CYP2D6 [190-192]

9 Dexamethasone $CYP3A4 [193] 

10 Umifenovir $CYP3A4 and $FMOs [194] 

11 Teicoplanin Unclear Metabolic path [195]

12 Nitazoxanide $Deacetylase, $UGT [196] 

13 Ivermectin  ICYP2C9, ICYP2C19 ICYP2D6, ICYP3A4 [197] 

14 Atazanavir ICYP3A4, IUDGT [168] 

15 Azithromycin $CYP3A4 [198, 199] 

16 Darunavir ICYP3A4 [178, 179] 

17 Ruxolitinib $CYP1A2, $CYP2B6, $CYP2C9 $CYP3A4 [200, 201] 

18 Baricitinib $CYP3A4 [181, 202]

19 Imatinib $CYP2C8, $CYP3A4, ICYP3A4 [203, 204]
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19 Fluvoxamine $CYP1A2, $CYP2C19, $CYP2D6, $CYP3A4 ICYP1A2, ICYP2C19 [205, 206]

[207]

20 Canabinoids $CYPs, $UGT [184, 208] 

21 Sofosbuvir $Hydrolases [209]

22 Daclatasvir $CYP3A4 [186] 

$-Substrate of, I-Inhibitor of, CYP; Cytochrome P450, UGT, UDP-Glucuronosyltransferase, AO; Aldehyde Oxidase, FMO; Flavin-

containing Monooxygenase

6. Consequences of DDI of a used drug in COVID-19 treatment.

CYP isoforms, particularly CYP1A2, CYPC9, CYP2C19, 
CYP2D6, and CYP3A4, are responsible for approximately 80% of 
all drug metabolism [228]. Several CYP450 isoenzymes, including 
CYP1A2, CYP2B6, CYPC9, CYP2C19, CYP2D6, and CYP3A4, 
have had their mRNA expression reduced by the inflammatory 
response suggested by in-vitro data [45]. As a result, theoretically, 
inflammation may have an impact on their pharmacokinetics. For 
medications with a restricted therapeutic index, such as HCQ and 
chloroquine CQ, this point is critical for clinical relevance.

Inflammation effect on the PK of antiretrovirals, which are 
primarily metabolized by CYP3A4, would be expected. For 
COVID-19 treatment lopinavir, ritonavir, atazanavir, and 
darunavir drugs have been used. These drugs are either substrate 
or inhibitor of different transporters (P-gp, OATP1B1, and BCRP) 
and their metabolism is mediated by CYP3A4. In HIV-positive 
patients, CYP3A activity was approximately 50% lower than in 
healthy volunteers [229]. In HIV patients, there was no significant 
association between inflammatory biomarker concentration and 
atazanavir clearance [230]. Later in this study authors also showed 
that the presence of booster ritonavir, which is consistently 
connected with atazanavir to limit its clearance, may have reduced 
the effect of inflammation. Two recent short reports found 
increased plasma lopinavir concentrations in severe COVID-19 
patients [231, 232], relative to those found in HIV patients, and in 
relation to inflammation [231]. Additional evidence supporting 
changes in PK of medication based on HIV-serostatus includes 
lower concentrations of atazanavir in HIV patients compared to 
healthy subjects and higher concentrations of darunavir in HIV 
patients compared to healthy volunteers [233].

Remdesivir has a linear PK profile. In COVID-19 patients, 
an intravenous administration, exhibited a peak at the end of 
infusion, while its phosphorylated metabolite GS-441524 reached 
a peak and then remained detectable with a half-life of more than 
35 hours until the next remdesivir administration [210]. While 
there was no significant variation in the half-life of remdesivir in 
healthy adults, the nucleoside metabolite GS-441524 had a half-
life of 24 hours [211]. Remdesivir is significantly metabolized 
by CYP2C8, CYP2D6, and CYP3A4 according to primary data 
from healthy human donors [158]. Remdesivir is a substrate of 

P-gp, active efflux in the lungs and CNS could potentially be 
involved. Remdesivir was found below the detection range in 
all the compartments tested, although GS-441524 was found 
in bronchoalveolar aspirate and a low concentration was 
also detected in CSF [210]. When CQ or HCQ is used with 
remdesivir, the antiviral activity of remdesivir may be reduced 
[236]. Co-treatment of remdesivir with baricitinib, a CYP3A4 
substrate, resulted in a significant adverse effect despite a rapid 
improvement in clinical status [237]. Although no scientific 
studies on remdesivir’s DDI have been completed, a mathematical 
predication of DDI liability has been made utilizing current phase 
I and in-vitro data [238]. Valuation for the remdesivir potential to 
prevent transporters and DMEs in-vivo, a physiologically based 
pharmacokinetic (PBPK) model is developed to capture the 
in vitro inhibition potency of remdesivir and in vivo PK using 
SimCYP software. Because of the high to moderate extraction 
ratio (0.6 to 0.8) and IV route of administration, when remdesivir 
had a low hepatic extraction ratio the effect of inducer/inhibitor 
on the PK of remdesivir will be significantly reduced [239]. The 
variance in midazolam (CYP3A), rosuvastatin (OATP/BCRP), 
metformin (MATE1), and pravastatin (OATP) probe exposure 
(AUC) was predicted using in vitro unbound inhibition constants 
for CYP3A, BCRP, OATP1B3, and MATE1. For these PBPK 
simulations, the time of remdesivir delivery relative to prob drug 
was optimized to predict the maximum DDI, which was roughly 
related to the administration of remdesivir, so the infusion 
ended at the probe maximum observed plasma concentration. At 
therapeutic remdesivir doses, co-administration of remdesivir is 
thought to enhance probing drug AUC by transporters. Previous 
studies showed that a 200 mg loading dose followed by 100 mg 
maintenance doses for roughly 5 to 10 days resulted in a stable PK 
for the COVID-19 medication [212].

Favipiravir is an antiviral prodrug that is converted to an active 
metabolite through phosphorylation by the intracellular enzyme 
hypoxanthine-guanine phosphoribosyl transferase (HGPRT). It 
shows non-CYPs facilitated biotransformation by aldehyde oxidase 
(AO) and xanthine oxidase (XO). Variants of AO are frequently 
linked to pharmacodynamics (PD) in other medications that are 
AO’s substrate. Because of the genetic variability of AO, elevated 
plasma levels of favipiravir must be indicated in Asian populations. 
Based on AO, the DDI of zaleplon and cimetidine is already known. 
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Cimetidine co-administration inhibits AO-catalyzed oxo-zaleplon 
formation, and the Zaleplon level is cautiously included. Clinicians 
should be aware that co-administration of the medicine with an 
AO inhibitor, such as cimetidine, tamoxifen phenothiazines, 
verapamil, amlodipine, nifedipine, loratadine, cyclobenzaprine, 
ondansetron, or ketoconazole, could theoretically increase plasma 
levels of favipiravir active metabolites because of possible drug-
drug interactions. Its metabolite inhibits OAT1 and OAT3 in 
a moderate way [141]. It is also a moderate inhibitor of various 
CYPs, but its effect on CYP2C8 must be clinically significant to 
enhance exposure [187] to drugs like rosiglitazone (hypoglycemic), 
repaglinide, torasemide, paclitaxel, and buprenorphine.

The HCQ metabolism is hepatic but not been precisely 
characterized and the effect CYP2C8 CYP2D6 and CYP3A4/5 
being extrapolated from CQ data.  The half-life of HCQ 
elimination is approximate 40 days. Both CQ and HCQ transform 
into active metabolites by CYP isomers through the dealkylation 
process [213, 214].

Systemic Lupus Erythematosus (SLE) patients demonstrated 
that HCQ and CQ both have variability in metabolism and 
the effect of CYP2D6 SNPs on blood HCQ level [215]. The 
gene polymorphisms of CYP2C8 CYP2D6 and CYP3A4/5 
may also alter the disposition. As immunologically challenged 
patients frequently developed more severe COVID-19 clinical 
complications. HCQ medication treatment for COVID-19 
infection was contested by various side effects among individual 
variability in CYP genotypes. Specifically, CYP2D6 genotyping 
may be helpful to decide the best possible HCQ dosage in 
the context of personalized medicine. CQ and HCQ are both 
inhibitors of P-gp. Both drugs also increase cyclosporine levels, 
with HCQ increasing digoxin levels. The multiple DDI that 
are now known, as well as the potential use of these agents in 
combination with other drug therapies, requires consideration 
for the safety of the patients.

Azithromycin is an antibiotic belonging to the macrolide group, 
used to prescribe COVID-19 patients who developed the risk 
of secondary infection. It has high tissue affinity with wide 
distribution in the body. The elimination half-life of azithromycin 
is between 2-4 days. It is primarily eliminated via the liver. It is 
noticed mainly in the bile and urine as a parental form. It inhibits 
CYP3A4 [198], OATP1A2 and OATP2B1 [173] moderately. 
Azithromycin and HCQ both drugs are both metabolized by 
CYP3A4. This combination was revealed to decrease the mortality 
associated with COVID-19 infection [216]. Co-medication of 
azithromycin heightened the QT of HCQ results enhance the 
chances of cardiac failure and cardiovascular mortality [217]. 
The possibility of a probable interaction is not PK but PD while 
recommending azithromycin as co-medication in connection with 
its effect on QT prolongation. Risks should be evaluated when 
azithromycin is administered to COVID patients with impaired 

hepatic function.

Dexamethasone is a synthetic glucocorticoid. It is 6-hydroxylated 
(6α- and 6β-hydroxy dexamethasone) by CYP3A4 and reversibly 
metabolized to dexamethasone by 11β- dehydrogenase isozyme.  
Dexamethasone is an agonist of nuclear pregnane X receptor 
(PXR) [218] and It is a weak inducer of CYP3A4 [219, 220] 
through PXR, with most data indicating that it decreases the 
exposure of sensitive CYP3A4 substrates by approximately 20%. 
PXR also changed the expression of other drug-metabolizing 
enzymes and transporters, such as CYP3A11, CYP2B10, and 
OATP2 [221-223]. Drug metabolizing enzyme variants (CYP3A4, 
CYP3A5, CYP3A7, and GSTT1) and transporters (ABCB1 and 
MDR1) have been associated with response to corticosteroids in 
several diseases [224]. Overdoses of corticosteroids are considered 
sufficiently immunosuppressive to warrant unease about probably 
lessening the effectiveness of vaccines. Corticosteroids also have 
a high risk of producing or aggravating hyperglycemia and may 
diminish the efficacy of antidiabetic drugs.

Ivermectin is presented as necessary medicine of the WHO model 
list. Ivermectin is mostly metabolized by CYP3A4, and it inhibits 
CYPC9, CYP2C19, CYP2D6, and CYP3A4 [197]. In animals, 
Ivermectin DDIs begin mainly at the level of P-gp (ABCB1). It is 
a substrate for P-gp [225] that enables ivermectin intestinal and 
biliary excretion and prevents it from entering the CNS (Central 
Nervous System) [226, 227]. Other transporters might also be 
involved in ivermectin DDIs like MRPs and BCRP [228]. Pgp 
and CYP3A4 inhibitors may increase the ivermectin level in the 
plasma. Ideally, metabolism might decrease with age leading to 
higher exposure of ivermectin in aged patients [229]. 

Umifenovir is also described in the publication as Arbidol. It was 
mainly excreted in urine as phase II conjugates with glucuronide 
and glucuronide sulfinyl as major metabolites.  Arbidol is a 
substrate for CYP3A4 and FMOs in vitro, insinuating that 
use with CYP3A4 inducer and inhibitors may lead to possibly 
significant increases and decreases in arbidol exposure. Total 
33 arbidol metabolites were found in human plasma, urine, 
and feces by engaging the different CYPs including CYP1A1, 
CYP2C19, CYP2D6, CYP2E1, CYP3A4/5, FMO1, FMO3, and 
FMO5 [194]. Three major metabolites (M5, M6-1, and M8) were 
detected in the plasma following oral treatment of umifenovir to 
healthy individuals. M6-1 is critical to assess for safety and efficacy 
because of its high exposure and extended elimination half-life. 
CYP3A4 was the most active enzyme in the arbidol metabolism 
in the liver and gut, followed by other CYPs and FMOs [194]. 
However, concern and close monitoring are advisable when it is 
on medication, and medical practitioners are reassured to inform 
presumed DDI that they observe concerning arbidol. 

Ruxolitinib and baricitinib, the Janus kinase inhibitor that has 
been used to treat COVID-19. Ruxolitinib is mostly metabolized 
by CYP3A4 and CYP2C9, with CYP1A2 and CYP2B6 playing a 
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minor role [200, 201]. Following inhibition of both CYP2C9 and 
CYP3A4 enzymes, fluconazole may increase plasma exposure. 
On the basis of the PBPK model, the importance of this 
interaction was validated in healthy subjects [230]. Fluconazole 
simulation findings were used as a foundation for ruxolitinib 
dose correction when perpetrator drugs were co-administered. 
Baricitinib clinical drug-drug interaction still needs to be known. 
It is metabolized in part by CYP3A4 and is a substrate of P-gp, 
BCRP, OAT3, multidrug, and toxin extrusion protein (MATE) 
2K. OCT1 is likewise inhibited by baricitinib. Probenecid is used 
for treating gout disease, increasing the exposure of baricitinib 
following inhibition of OAT3, and lowering the renal clearance 
in healthy participants. The renal clearance and inhibitory 
effect of probenecid on baricitinib were reproduced in vitro 
using PBPK modelling [180]. Both have immunosuppressive 
effects and associated interactions concerns regarding other 
immunosuppressants and live vaccines.  

Imatinib is the tyrosine kinase inhibitor and is solely metabolized 
by CYP3A4 and CYP2C8 [204].  It was also shown that CYP3A4 
inhibition occurs through an irreversible mechanism [231]. The 
time-dependent auto inhibition of its own CYP3A4 metabolism 
leads to an important role for CYP2C8 in the elimination of 
imatinib. The auto inhibition of its own CYP3A4 metabolism in 
a time-dependent manner resulted in a significant involvement for 
CYP2C8 in imatinib elimination. Interactions with other drugs 
and pharmacogenetic polymorphisms both impact CYP2C8 
activity during many administrations, resulting in apparent 
interindividual variability in imatinib exposure. Dexamethasone 
is a potent inducer of CYP3A4 and significantly reduces the 
plasma level of imatinib. However, there is no literature available 
to find DDI with imatinib and dexamethasone. Imatinib is a 
known substrate of ABC transporters [232, 233], they have been 
reported to antagonize these transporters. This effect could 
manipulate the PK properties of imatinib, perhaps lessening its 
absorption subsequently causing imatinib concentration to drop 
below therapeutic levels [234, 235].

Fluvoxamine is a serotonin reuptake inhibitor with a half-life 
of approximately 30 hours. It has anti-inflammatory properties. 
It is known that it inhibits the enzyme CYP1A2. It is, however, 
a strong inhibitor of CYP2C19. A case study of a 48-year-old 
lady with a psychiatric disorder has died following treatment of 
multiple drugs along with fluvoxamine. After the autopsy, femoral 
and cardiac blood, urine, and bile were collected for toxicological 
kinetics. Fluvoxamine, propranolol, clotipine, gabapentin, 
7-aminoclonazepam, and haloperidol drugs were detected after 
the examination. Fluvoxamine levels in the blood exceeded 
the upper limit of therapeutic blood level by approximately ten 
times. The relevant cause of death was due to multiple drug use 
[236]. Fluvoxamine has a minor effect on medications that are 
metabolized by CYP3A4. It is classified as a potent inhibitor of 
CYP1A2 and CYP2C19 by the FDA. It is commonly used for 

clinical DDI [237]. PBPK model was created to characterize the 
CYP1A2 and CYP2C19 for interaction between fluvoxamine 
and other drugs [238]. As a result, it can be used to support 
prospective dose adaptation suggestions, labelling, and clinical 
DDI trial design.

Sofosbuvir is a substrate of Pgp and BCRP [185]. Hydrolases 
metabolize sofosbuvir extensively, and GS-331007 metabolite 
accounts for more than 90 % of overall drug exposure [209]. The 
metabolizing enzymes and drug transporters are not inhibited or 
induced by sofosbuvir or its metabolites. Daclatasvir is a substrate 
for CYP3A4 Pgp and also the inhibitor of Pgp, BCRP, OATP1B1, 
and OATP1B3 [186]. The feces are the predominant route of 
elimination for daclatasvir, followed by the kidneys. Sofosbuvir 
and daclatasvir have exhibited good safety profiles with minimum 
drug interaction and widely available therapeutic options for 
COVID-19 treatment.

Some of the drugs included in Table 1 lack pharmacogenomic 
data and are still in clinical trials for the treatment of COVID-19 
infection, therefore more research is needed to determine 
drug metabolism and disposition in the inflammatory and 
immunomodulatory state.

Conclusion

COVID-19 is classified as a multisystemic disease. The elementary 
pathogenesis involves distinct components; immune deficiency 
and severe lung inflammation, which leads to increased 
production of cytokines and is related to inappropriate immune 
response. Timely management of the cytokine storm in its early 
stage through immunomodulators, cytokine antagonists as well as 
the reduction of lung inflammatory cell infiltration, are the key to 
reducing the mortality rate and improving the treatment success 
rate of COVID-19 patients. In consequence, treatment approaches 
at present include anti-infectious, anti-viral, anti-proinflammatory 
cytokines, and life support therapies.  The potential of disease-
drug or drug-drug interaction is an essential concern while 
providing optimal treatment regimens for individual patients. 
Hence, the present review expounded the probability of drug 
interaction in COVID-19 patients while reaching inflammatory 
conditions and or having comorbidity like autoimmune and 
metabolic diseases. This point is highly clinical relevance for 
drugs with a narrow therapeutic index like HCQ and CQ. As 
the mechanism underlying the observed alteration in the plasma 
binding proteins, drug transporters, and DMEs comes to be clear, 
the next step is to address the clinical importance to better predict 
the drug concentration in the inflammatory state of the disease 
condition. Proinflammatory cytokines impede the expression and 
activity of drug transporters and DMEs (hepatic and extrahepatic). 
Alteration in the transporters and DMEs can lead to changes in 
the PK parameters of used drugs. The risk of drug interactions 
should not be prohibited since they are frequently manageable 
and convenient. The consumption of a single drug may possibly 
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not be more effective, but during co-medication of multiple drugs, 
the risk of drug interaction must be increased. The impact of 
inflammation on the PK of the drug remains and alternated an 
important field of research.
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