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Introduction

Many important agricultural species are polyploids. They 
range from staple food crops (potato, sweetpotato) to fruits 
(strawberry, kiwi, blueberry, and banana), ornamental flowers 
(chrysanthemum), forage crops, turfgrass, and sugar and energy 
production crops (sugarcane). Polyploid crops have multiple 
copies of the complete set of chromosomes. They can originate 
from the fusion or duplication of genomes during evolutive 
and breeding processes. In the first case, they are referred to as 
allopolyploids, and in the latter, autopolyploids.

While the importance of these species is indisputable, the 
complexity introduced by the multiple genome copies imposes 
numerous challenges to polyploid genome analysis and subsequent 
applications in practical breeding. For instance, when combining 
six homologous chromosomes in sets of three, the autohexaploid 
sweetpotato can yield up to 20 different gametes at a locus. The 
combination of such gametes in a biparental cross can generate 
400 possible genotypes. In contrast to an outcrossing diploid 
species, which produces up to four different genotypes, this is a 
100-fold increase in complexity [1] (Figure 1).

Many polyploid crops are highly heterogeneous and could have 
significant inbreeding depression when inbred. This fact rules 
out the practicality of using homozygous lines in polyploid 
breeding programs. As the vast majority of polyploid species 
are clonally propagated, the basic breeding approach used for 
polyploidy crops is recurrent phenotypic selection with little or 
no input from genomic information. The structure of practical 
breeding populations is typically composed of several (partially) 
inter-related families in complex pedigrees with many families 
and relatively small family sizes (typically about 10-20). All these 
impose unusually hard challenges for an informed and efficient 
application of genomics for practical breeding in polyploid crops. 
Yet as these crops require significant field space, time of breeding 
cycle, and workforce, running these breeding programs is very 
costly. In a rapidly changing world in need of assertive breeding 
strategies, a case can be made that using genomic information for 
breeding, though technically very challenging, can save time and 
money, if implemented properly with efficiency.

One of the most significant advances in the polyploid genetic 
analysis in the last decade was the possibility of assessing these 
complex genomes using high-throughput DNA sequence 
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Figure 1: Comparison between diploid and hexaploid complexity. A) At the left panel, four possible genotypes from a diploid biparental 
cross are collapsed in three classes (AA, Aa, aa) when assessed using a biallelic marker at the right panel. B) The four hundred possible 
hexaploid genotypes in the left panel collapsed into seven genotypic classes when assessed with biallelic markers with three doses in both 
parents. Notice that the information loss in the hexaploid case, from 400 to seven classes, is much more critical than the diploid case.

In recent years, polyploid genetic analysis has been gaining strength 

and attention, and several software programs are now available 

to the polyploid scientific community. Haplotype-based calling 

tools (e.g. GATK and FreeBayes) are particularly more amenable 

to dosage-based variant calling in contrast to variant callers (e.g. 

Tassel, STACK, and SAMtools) developed for diploids.  Other 

tools developed to improve accuracy of dosage-based genotyping in 

bi-parental and/or non-family-based populations include FitPoly 

[4], SuperMASSA [5], VCF2SM [6], updog [7], and polyRAD [8]. 

Some of these tools account for common problematic features in 

NGS data such as base calling error, allele bias, and over dispersion. 

All of them provide dosages of genome-wide SNP variants. On 

the linkage analysis front, programs such as TetraploidSNPmap 

[9], polymapR [10], and MAPpoly [1, 3] can use dosage-based 

markers to build genetic maps and obtain the linkage phase 

information in full-sib mapping populations. In a linkage analysis, 

we would like to infer the order, position, and parental phase of 

markers, and moreover the transmission patterns of the parental 

technology [2, 3]. Such technology can now deliver inexpensive 
and massive amounts of DNA sequences which can be analyzed 
and converted into quantitative SNP-binary dosage markers. 
This technological advance made it possible for an in-depth 
polyploid genome analysis. Although the genetic information of 

each individual SNP dosage marker can be very limited, highly 
incomplete and error-prone, especially for high-ploidies, large 
amounts of these markers can provide sufficient information for 
us to infer the genetic inheritance in polyploid populations [1, 3].
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homologs across generations. Ultimately, we would like to be 

able to infer the complete probabilistic haplotype inheritance 

patterns of any individual in a segregating population in terms 

of their respective parental haplotypes. Programs such as Tetra 

Origin [11], PolyOrigin [12] and MAPpoly [1, 3] implemented 

this complicated task. While the first two programs depend on 

genetic maps and implement this procedure only for tetraploid 

families, MAPpoly can perform this task in ploidy levels as high as 

octaploid and does not depend on a pre-existing framework map. 

The haplotypic probabilities generated by the map construction 

are used to estimate the position, number, and genetic effects of 

genomic regions associated with important agronomic traits (QTL 

mapping). This is important for us to understand the genetic basis 

of trait variation in a population. Also, by using this information, 

breeders can benefit from the inferred genome-wide genotype 

and phenotype relationship to make informed breeding decisions 

(marker-assisted selection and genomic selection). Software for 

performing such analysis in polyploids includes QTLpoly [13], 

polyqtlR [2], DiaQTL [14], and GWASpoly [15]. 

Thus in order to use genomic information for breeding, we need 

powerful and efficient computational tools that can process raw 

DNA sequence data to call genetic markers (marker identification); 

from markers to construct a genetic linkage map (linkage map 

construction and haplotype inference); use the map to locate 

candidate genes that are important to trait phenotypes (QTL 

mapping), and use the inferred genotype-phenotype relationship 

to make informed decisions for breeding (QTL aided selection or 

genomic selection).

In the last few years, our group has been developing some of the 

tools mentioned above (VCF2SM, SuperMASSA, MAPpoly, and 

QTLpoly) to help polyploid breeders and geneticists to perform 

genomic analysis. VCF2SM integrates a pipeline of data analysis 

programs from raw DNA sequences for SuperMASSA to call 

dosage markers [6]. SuperMASSA is a program that implements a 

graphical Bayesian network model to infer genotypes even when 

the ploidy level is unknown [5]. SuperMASSA uses as input 

the abundance of the reference and alternate allelic variants 

for a specific genome locus and models their distribution using 

expected ratios and the allelic frequency of the analyzed population 

under a range of ploidy levels. The program then computes the 

maximum a posteriori configuration of the Bayesian network 

obtaining the most likely ploidy level and genotype configuration 

for all individuals in the population. One could also obtain the 

probability distribution for the genotypes, which can be used in 

subsequent genetic analysis. We used SuperMASSA to perform 

the genotype dosage calling in several sweetpotato biparental 

populations, including the Beauregard x Tanzania (BT), which 

served as the basis to develop our mapping and QTL analysis 

algorithms [3, 13, 17 and 16].

One of the major initiatives we have taken in the last several years 

was the development and implementation of a complete solution 

to construct genetic maps in full-sib families. Our solution uses 

multilocus hidden Markov model (HMM) analysis and works 

for even ploidy levels from diploids up to autooctaploids [1, 3]. 

The model uses, as input, the probability distribution of biallelic 

dosage marker genotypes, and by using the information from 

multiple markers to recover and infer the multiple polyploid 

genotypes that are present in the segregating population. The 

concept of HMM in the context of genetic mapping [18] is to use 

multiple linked markers to estimate the parental linkage phase, the 

genetic distance between markers, and reconstruct the offspring 

haplotypes. Thus, by using the various sources of interconnected 

evidence (multiple SNPs and individuals), HMM can aggregate 

multiple SNP information and also reduce the intrinsic high error 

rate in individual marker dosage callings in polyploid species. 

The use of multilocus analysis to construct genetic maps and 

offspring haplotypes in polyploids is extremely important for both 

information recovery and marker data quality control.

In order to make the multipoint map construction available to the 

scientific community, we developed and freely released MAPpoly 

(https://cran.r-project.org/web/packages/mappoly/). MAPpoly 

is an R package to construct genetic maps in autopolyploids with 

even ploidy levels. In its current version (0.2.3), MAPpoly can 

handle even ploidy levels up to 8 when using hidden Markov models 

(HMM), and up to 12 when using the two-point simplification. It 

contains several functions that perform all the steps in the whole 

linkage analysis pipeline, such as loading a variety of dosage-based 

datasets, including genotype probabilities, filtering procedures, 

pairwise linkage analysis, clustering linkage groups, ordering 

markers, phasing and multipoint map estimation, computation 

of genotype probabilities for further QTL analysis, and inference 

of meiotic processes. It also contains functions to communicate 

with other polyploid analysis packages such as fitPoly, updog, 

polyRAD, and polymapR. The initial implementation of 

MAPpoly was limited to biparental populations and successfully 

used to construct an integrated sweetpotato genetic map in a full-

sib population of Beauregard x Tanzania (BT), the first multilocus 

genetic map for an autohexaploid species [3] (Figure 2). The effort 

is underway to extend it to multiple inter-connected families.
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Figure 2: 2A: A snapshot of the inferred genetic map of linkage group 1 for sweetpotato Beauregard x Tanzania (BT) population.  For 
each marker the information includes maker name, dosage, haplotype makeup, genome position and genetic map distance. Detailed 
information is available at https://gt4sp-genetic-map.shinyapps.io/bt_map/; 2B: The inferred haplotype of individual BT05:320 for 
linkage group 1 in terms of parental haplotypes.

A

For QTL mapping, we aim to interpret the genetic basis of 
quantitative trait variation in a population for genetic discovery 
and prediction. Due to a potentially large number of alleles at 
each QTL locus in polyploid populations, we developed a random 
QTL-effect model for mapping multiple QTL. The multiple 
QTL are searched sequentially. QTL effect parameter estimation 
is based on a mixed-effect model with REML. The test statistic 
for QTL identification is based on a score-statistic to compute 
empirical p-values efficiently. The method is general and flexible 
and can be readily extended for multiple families. 

We developed QTLpoly (https://cran.r-project.org/web/
packages/qtlpoly/) in an R package for a general QTL mapping 
analysis in polyploid populations [12]. QTLpoly takes the output 
of haplotype structure inferred from MAPpoly as an input in 
terms of the genotype conditional probability distribution at 
each genomic position for each individual and combines it with 
phenotypes to perform a variety of genetic analyses between 
genotypes and phenotypes. It can perform the genomic selection 

(GS) and prediction. But more importantly it can build a clearly 
defined and flexible genetic model that can achieve the purposes 
of both genetic discovery and breeding value prediction for 
selection. SP GD, et al. (2020) [13] reported the mapping of a 
number of QTL for both qualitative traits and yield traits.

For disease resistance, SP GD, et al. (2021) [19] reported the 
mapping of a major QTL for common scab resistance in a 
tetraploid potato full-sib population. Based on the genome 
information of the mapped region, a number of candidate genes 
were suggested. Such a mapping and identification of QTL 
haplotypes would facilitate the application of genome-assisted 
breeding for disease resistance and also for the identification of 
the causal gene. Also, Oloka BM, et al. (2021) [17] reported the 
mapping of a major QTL for root-knot nematode (Meloidogyne 
incognita) resistance in sweetpotato. They identified the genetic 
inheritance model (duplex-dominant) and specific SNP that are 
linked to the resistance. 
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Based on the QTL mapping of SP GD et al. (2020), Gemenet DC, 
et al. (2020) [13,16] reported an interesting and important study 
on the comparison of predictive abilities of different methods 
(measured as the correlation between the predicted and observed 
phenotypes in the validation sample based on an10-fold cross-
validation) (Figure 3). The message is clear: a fuller genetic analysis 

can achieve not only a clear genetic discovery (identification 
of specifical QTL in the genome, specifical alleles and allelic 
combinations in terms of parental haplotypes, a genetic model 
of casual variants, and the importance of QTL effects in terms of 
heritability) but also better prediction for breeding.

Figure 3: The left panel: a comparison of different mapping analysis in the BT population of sweetpotato based on a 10-fold cross-validation on the 
qualitative traits (A) and yield-related traits (B): diploid-like markers vs. dosage markers vs. haplotypes. Predictive ability is the correlation between the 
predicted and observed phenotypes on the validation sample. The dosage marker analysis performs better than the diploidized marker analysis, and 
the haplotype-based analysis performs better than the dosage marker analysis. The right panel: the similar comparison between a QTL-based analysis 
and the genomic selection (GS) (based on all markers with the constructed haplotypes). It shows that a QTL-based analysis can achieve better predictive 
power, or as powerful as GS in the case of yield-related traits). If we put both aspects (the issues involved with the left and right-panels) together for 
comparison, the difference would be more profound [16].
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However, to make these tools applicable to the practical breeding 
situation, we need to consider the complex family structure of 
polyploid breeding populations, typically in the form of multiple 
partially inter-related families. There are several technical 
challenges that need to be overcome for such an extension. 
Still, the time is ripe for the polyploid community to earnestly 
consider using genomics in their studies and breeding. It is time 
for polyploids to catch up with diploids in the era of genomics.
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